• Title/Summary/Keyword: 내용기반 이미지검색

Search Result 245, Processing Time 0.024 seconds

A Semantic-based Video Retrieval System Using the Automatic Indexing Agent (자동 인덱싱 에이전트를 이용한 의미기반 비디오 검색 시스템)

  • Kim Sam-Keun;Lee Jong-Hee;Yoon Sun-Hee;Lee Keun-Soo;Seo Jeong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.127-137
    • /
    • 2006
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the automatic indexing agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantic-based retrieval.

  • PDF

Sketch query method for medical image retrieval based on disease icon (의료 영상 검색을 위한 아이콘 기반의 스케치 질의 작성 방안)

  • 이낙훈;엄기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.122-124
    • /
    • 2000
  • 본 논문은 질병이 있는 뇌종양 MRI 이미지 검색을 위해 아이콘 기반의 스케치 질의 방안을 제시한다. 기존의 이미지 검색 시스템은 이미지가 갖는 속성 중 일부의 속성 값만을 가지고 사용자가 직접 질의 이미지를 작성한다. 그러나 이런 방법으로는 여러 복잡한 속성값을 갖는 뇌종양 MRI 이미지의 내용을 표현하기는 어렵다. 그래서 본 논문에서는 질병이 있는 뇌 MRI 이미지 검색을 위해 아이콘을 사용한 템플릿 형식의 메디컬 스케치 질의 방법을 제시한다. 뇌에서 발생하는 뇌질환을 질병별로 분류하였고, 분류된 질병들이 가지고 있는 색상이나 질감, 모양과 같은 속성 값들을 아이콘화하여 템플릿 이미지로 제공되는 정상인의 이미지에 정의된 질병 아이콘의 크기와 위치를 설정함으로써 사용자가 검색하고자 하는 질의 이미지를 쉽게 작성할 수 있는 스케치 형식의 질의방법을 제안한다.

  • PDF

Feature Extraction of Shape of Image Objects in Content-based Image Retrieval (내용기반으로한 이미지 검색에서 이미지 객체들의 외형특징추출)

  • Cho, June-Suh
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.823-828
    • /
    • 2003
  • The main objective of this paper is to provide a methodology of feature extraction using shape of image objects for content-based image retrieval. The shape of most real-life objects is irregular, and hence there is no universal approach to quantify the shape of an arbitrary object. In particular. electronic catalogs contain many image objects for their products. In this paper, we perform feature extraction based on individual objects in images rather than on the whole image itself, since our method uses a shape-based approach of objects using RLC lines within an image. Experiments show that shape parameters distinctly represented image objects and provided better classification and discrimination among image objects in an image database compared to Texture.

A Semantics-based Video Retrieval System using Annotation and Feature (주석 및 특징을 이용한 의미기반 비디오 검색 시스템)

  • 이종희
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency md requires many efforts of system administrator or annotator because of imperfect automatic processing. In this paper, we propose semantics-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method and optimized comparison area extracting that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantics-based retrieval.

The Research of Mini-Game by Using Online Image Automatic Detection Technology (온라인 이미지 자동 검색 기술을 이용한 미니게임에 관한 연구)

  • Huang, Chun-Hua;Cho, Kwang-Hyeon;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Korea Game Society
    • /
    • v.11 no.2
    • /
    • pp.115-129
    • /
    • 2011
  • In this paper, we will introduce some method about retrieving suitable images to game or adjusting game difficulty in enjoying some contents like mini-game. It will use the technology about extracting color and texture features in content-based image retrieval in image processing. So in card game, it select card image automatically. And by controlling seed image number, we can adjusting game difficulty. Through the experiment, it shows that our image retrieval method can retrieve more useful images that can be used in game than others.

A Image Retrieval Model Based on Weighted Visual Features Determined by Relevance Feedback (적합성 피드백을 통해 결정된 가중치를 갖는 시각적 특성에 기반을 둔 이미지 검색 모델)

  • Song, Ji-Young;Kim, Woo-Cheol;Kim, Seung-Woo;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.3
    • /
    • pp.193-205
    • /
    • 2007
  • Increasing amount of digital images requires more accurate and faster way of image retrieval. So far, image retrieval method includes content-based retrieval and keyword based retrieval, the former utilizing visual features such as color and brightness and the latter utilizing keywords which describe the image. However, the effectiveness of these methods as to providing the exact images the user wanted has been under question. Hence, many researchers have been working on relevance feedback, a process in which responses from the user are given as a feedback during the retrieval session in order to define user’s need and provide improved result. Yet, the methods which have employed relevance feedback also have drawbacks since several feedbacks are necessary to have appropriate result and the feedback information can not be reused. In this paper, a novel retrieval model has been proposed which annotates an image with a keyword and modifies the confidence level of the keyword in response to the user’s feedback. In the proposed model, not only the images which have received positive feedback but also the other images with the visual features similar to the features used to distinguish the positive image are subjected to confidence modification. This enables modifying large amount of images with only a few feedbacks ultimately leading to faster and more accurate retrieval result. An experiment has been performed to verify the effectiveness of the proposed model and the result has demonstrated rapid increase in recall and precision while receiving the same number of feedbacks.

A study on searching image by cluster indexing and sequential I/O (연속적 I/O와 클러스터 인덱싱 구조를 이용한 이미지 데이타 검색 연구)

  • Kim, Jin-Ok;Hwang, Dae-Joon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.779-788
    • /
    • 2002
  • There are many technically difficult issues in searching multimedia data such as image, video and audio because they are massive and more complex than simple text-based data. As a method of searching multimedia data, a similarity retrieval has been studied to retrieve automatically basic features of multimedia data and to make a search among data with retrieved features because exact match is not adaptable to a matrix of features of multimedia. In this paper, data clustering and its indexing are proposed as a speedy similarity-retrieval method of multimedia data. This approach clusters similar images on adjacent disk cylinders and then builds Indexes to access the clusters. To minimize the search cost, the hashing is adapted to index cluster. In addition, to reduce I/O time, the proposed searching takes just one I/O to look up the location of the cluster containing similar object and one sequential file I/O to read in this cluster. The proposed schema solves the problem of multi-dimension by using clustering and its indexing and has higher search efficiency than the content-based image retrieval that uses only clustering or indexing structure.

Dithered Color-Based Image Retrieval Scheme (디더링된 색상 기반의 이미지 검색 기법)

  • Kim, Daehoon;Hwang, Eenjun
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.357-358
    • /
    • 2009
  • 다양한 내용 기반의 이미지 검색 기법 중에서 특히 색상 기반의 검색은 다른 기법들에 비해 효율성 면에서 우수하기 때문에 PMP 와 같은 소형 기기에서부터 디지털 TV 등의 대형 기기에까지 적용 가능하다는 장점이 있으며, 실제 이를 적용한 제품들이 발표되고 있다. 한편, 디더렁(Dithering) 기법은 이미지가 주는 느낌을 유지하면서도 정보의 양을 줄일 수 있게 해준다. 따라서 디더링 처리된 영상으로부터 색상 정보를 추출하고, 색상 정보간의 EMD 값을 영상간 유사도로 사용한다면 효과적인 이미지 검색이 가능하다. 본 논문에서는 디더링된 색상 정보 기반의 새로운 검색 기법을 제안하고 프로토타입 시스템을 통하여 그 성능을 평가하였다.

Design and Implementation of a Content-based Color Image Retrieval System based on Color -Spatial Feature (색상-공간 특징을 사용한 내용기반 칼라 이미지 검색 시스템의 설계 및 구현)

  • An, Cheol-Ung;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.5
    • /
    • pp.628-638
    • /
    • 1999
  • In this paper, we presents a method of retrieving 24 bpp RGB images based on color-spatial features. For each image, it is subdivided into regions by using similarity of color after converting RGB color space to CIE L*u*v* color space that is perceptually uniform. Our segmentation algorithm constrains the size of region because a small region is discardable and a large region is difficult to extract spatial feature. For each region, averaging color and center of region are extracted to construct color-spatial features. During the image retrieval process, the color and spatial features of query are compared with those of the database images using our similarity measure to determine the set of candidate images to be retrieved. We implement a content-based color image retrieval system using the proposed method. The system is able to retrieve images by user graphic or example image query. Experimental results show that Recall/Precision is 0.80/0.84.

Investigating the End-User Tagging Behavior and its Implications in Flickr (플리커 이미지 자료에 대한 이용자 태깅 행태 분석과 활용 방안)

  • Kim, Hyun-Hee;Kim, Min-Kyung
    • Journal of Information Management
    • /
    • v.40 no.2
    • /
    • pp.71-94
    • /
    • 2009
  • Indexing images using traditional indexing methods like taxonomy is not always efficient because of its visual content. This study examined how to apply folksonomies to image retrieval. To do this, first, we developed a category model for image tags found in Flickr. The model includes five categories and seventeen subcategories. Second, in order to evaluate the usefulness of the model to represent the various image tags as well as to investigate the end-user tagging behavior, three researchers classified the sampled image tags(141 most popular tags, 105 tags on three individual tag clouds and 3,848 image tags assigned on 156 images) according to the model. Finally, based on the research results, we proposed three methods for efficient image retrieval: extending folksonomies by combining them with ontologies; improving image retrieval efficiency using visual content and folksonomies; and updating taxonomy using folksonomies.