• Title/Summary/Keyword: 내부 선량 계측

Search Result 22, Processing Time 0.033 seconds

Application of the Detection of External Contamination on Radiation Workers for Bed Type Whole Body Counting Using Monte Carlo Method (몬테카를로 방법을 적용한 bed type 전신계측기의 방사선작업종사자 외부오염 검출 응용)

  • Kim, Jeong-In;Lee, Byoung-Il
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.242-245
    • /
    • 2013
  • Monte Carlo method was applied to discriminate the external contamination on radiation workers in nuclear power plants for internal dose assessment generally used with a bed type scanning detector whole body counter. Korean voxel model with internal contamination was used to estimate the detection patterns of whole body scanning. Also, the BOMAB model with various external contamination was assumed to compare with detection of radionuclides inside the human body. From the comparison of detection efficiency between front and back side up, external contamination was easily distinguished.

A Study on the Selection of Optimal Counting Geometry for Whole Body Counter (WBC) (인체 내부방사능 측정용 전신계측기의 최적 검출 모드 선정에 관한 연구)

  • Ko, Jong Hyun;Kim, Hee Geun;Kong, Tae Young;Lee, Goung Jin
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A whole body counter (WBC) is used in nuclear power plants (NPP) to identify and measure internal radioactivity of workers who is likely to ingest or inhale radionuclides. WBC has several counting geometry, i.e. the thyroid, lung, whole body and gastrointestinal tract, considered with the location where radionuclides are deposited in the body. But only whole body geometry is used to detect internal radioactivity during whole body counting at NPPs. It is overestimated internal exposure dose because this measured values are indicated as the most conservative radioactivity values among the them of others geometry. In this study, experiments to measure radioactivity depending on the counting geometry of WBC were carried out using a WBC, a phantom, and standard radiation sources in order to improve overestimated internal exposure dose. Quantitative criteria, could be selected counting geometry according to ratio of count rates of the upper and lower detectors of the WBC, are provided through statistical analysis method.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Dose Distribution Study for Quantitative Evaluation when using Radioisotope (99mTc, 18F) Sources (방사성 동위원소 (99mTc, 18F) 선원 사용 시 인체 내부피폭의 정량적 평가를 위한 선량분포 연구)

  • Ji, Young-Sik;Lee, Dong-Yeon;Yang, Hyun-Gyung
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.603-609
    • /
    • 2022
  • The dose distribution in the human body was evaluated and analyzed through dosimetry data using water phantom, ionization chamber and simulated by Monte Carlo simulation for 99mTc and 18F sources, which are frequently used in the nuclear medicine in this study. As a result of this study, it was found that the dose decreased exponentially as the distance from the radioisotope increased, and it particularly showed a tendency to decrease sharply when the radioisotope was separated by 5 cm. It means that a large amount of dose is delivered to an organ located within 4 cm of source's movement path when a source uptake in the human body. Numerically, it was formed in the rage of 0.16 to 2.16 pC/min for 99mTc and 0.49 to 9.29 pC/min for 18F. In addition, the energy transfer coefficient calculated using the result was found to be similar to the measured value and the simulation value in the range of 0.240 to 0.260. Especially, when the measured data and the simulation value were compared, there was a difference is within 2%, so the reliability of the data was secured. In this study, the distribution of radiation generated from a source was calculated to quantitatively evaluate the internal dose by radioisotopes. It presented reliable results through comparative analysis of the measurement value and simulation value. Above all, it has a great significance to the point that it was presented by directly measuring the distribution of radiation in the human body.

Study on Development of Patient Effective Dose Calculation Program of Nuclear Medicine Examination (핵의학검사의 환자 유효선량 계산 프로그램 제작에 관한 연구)

  • Seon, Jong-Ryul;Gil, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.657-665
    • /
    • 2017
  • The aim of this study was to develop and distribute a dedicated program that can easily calculate the effective dose of a patient undergoing nuclear medicine examinations, and assist in the study of dose of nuclear medicine examinations and information disclosure. The program produced a database of the effective dose per unit activity administered (mSv/MBq) of the radiopharmaceuticals listed in ICRP 80, 106 Report and the fourth addendum, was designed through Microsoft Visual Basic (In Excel) to take the effect of 5 different (Area, Clark, Solomon(=Fried), Webster, Young) of pediatric dose calculation methods and 7 different body surface area calculation methods. The program calculates the effective dose (mSv) when the age, radionuclide, substance, and amount injected in the human body is inputted. In pediatric cases, when the age is entered, the pediatric method is activated and the pediatric method to be applied can be selected. When the BSA (Body Surface Area) formula is selected in the pediatric calculation method, a selection window for selecting the body surface area calculation method is activated. When the adult dose is input, the infant dose and the effective dose (mSv) are calculated automatically. The patient effective dose calculation program of the nuclear medicine examinations produced in this study is meaningful as a tool for calculating the internal exposure dose of the human body that is most likely to be obtained in nuclear medicine examinations, even though it is not the actual measurement dose. In the future, to increase the utilization of the program, it will be produced as an application that can be used in mobile devices, so that the public can access it easily.

Evaluation of Indoor Radon Levels in a Hospital Underground Space and Internal Exposure (의료기관 지하시설의 라돈가스 측정과 내부피폭 조사)

  • Song, Jea-Ho;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.231-235
    • /
    • 2011
  • Radium is rock or soil of crust or uranium of building materials and thorium after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like mine or basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. Radium sheath of medical institution treat person's life is possible big danger to professional regarding radioactivity who has much amount exposed radioactivity and weaker immune patient. so we do this test. Using measuring instrument at test is real time radium measuring instrument, Professional Continuous Radon monitor, and measuring places are basement first floor and second floor of two hospitals and measure from 10 a.m to 3 p.m. Measurement result of Professional Continuous Radon monitor is minimum 14.8 Bq/$m^3$ to maximum 70.3 Bq/$m^3$ and show domestic baseline below 148 Bq/$m^3$, effective dose-rate is minimum 0.296 mSv to maximum 1.406 mSv that show 2.4 mSv, 10~58.3% level, exposed radiation amount from nature radiation one year.

Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System (구동팬텀 시스템에 의한 움직이는 장기의 선량분포 분석)

  • Kim, Yon-Lae;Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Lee, Gui-Won;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2006
  • Purpose: Few researches have been peformed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. Materials and Methods: A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of $1.14g/cm^3,\;0.32g/cm^3$ respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose ditrbutions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Results: Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distrbutions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. Conclusion: The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles have more fluctuation at Gafchromic EBT. If the multipurpose phantom and moving device are used for treatment Q.A, and its corrections are made, treatment quality should be improved for the moving organs.

  • PDF

Dose Distribution and Characterization for Radiation Fields of Multileaf Collimateor System (방사선 입체조형치료용 다엽콜리메이터의 특성과 조직내 선량분포 측정)

  • Chu, Sung-Sil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Purpose : Multileaf collimator(MLC) is very suitable tool for conformal radio-therapy and commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 10MV photons are required, For modeling the collimator with treament planning software, detailed dosimetric characterization of the multileaf collimator including the penumbra width, leaf transmission between leaf leakage and localization of the leaf ends and sides is an essential requirement. materials and Methods : Measurement of characteristic data of the MLC with 26 pair block leaves installed on CLINAC 2100C linear accelerator was performed. Low sensitive radiographic film(X-omatV) was used for the penumbra measurement and separate experiments using radiographic film and thermoluminescent dosimeters were performed to verify the dose distribution, Measured films were analized with a photodensitometer of WP700i scanner. Results : For 6 & 10 MV x-ray energies, approximately $2.0\%$ of photons incident on the multileaf collimator were transmitted and an additional $0.5\%$ leakage occurs between the leaves. Localizing the physical end of the leaves showed less than 1mm deviation from the $50\%$ decrement line and this difference is attributed to the curved shaped end on the leaves One side of a sin히e leaf corresponded to the $50\%$ decrement line, but the opposite face was aligned with a lower value. This difference is due to the tongue and groove used to decrease between leaf leakage. Alignment of the leaves to form a straight edge resulted larger penumbra at far position from isocenter as compare with divergent alloy blocks. When the MLC edge is stepped by sloping field, the isodose lines follow the leaf pattern and Produce scalloping isodose curves in tissue. The effective penumbra by 45 degree stepped MLC is about 10mm at 10cm depth for 6MV x-ray. The difference of effective penumbra in deep tissue between MLC and divergent alloy blocks is small (5mm). Conclusion : Using the characteristic data of MLC, the MLC has the clinlical acceptability and suitability for 3-D conformal radiotherapy except small field size.

  • PDF

The Measurement of Airborne Radon Daughter Concentrations in the Atmosphere (대기중(大氣中) 라돈 붕괴생성물(崩壞生成物)의 공기중(空氣中) 방사능(放射能) 농도(濃度)의 측정(測定))

  • Ha, Chung-Woo;Lee, Jai-Ki;Moon, Philip S.;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.5-13
    • /
    • 1979
  • A simple method for determining the airborne concentration of radon daughter products has been developed, which is based on gross alpha counting of the air filter collections at several time intervals after completion of air sampling. The concentration of each nuclide is then obtained from an equation involving the alpha disintegrations, the sampling time, and the known numerical coefficients. The state of radioactive disequilibrium is also investigated. The atmosphere sampled in the TRIGA Mark-III reactor room was largely in disequilibrium. The extent of radioactive disequilibrium between radon daughter products seems likely depend on sampling times associated with turbulence conditions. The data obtained here will certainly provide useful information on the evaluation of internal exposure and calibration of effluent monitoring instruments.

  • PDF

Elementary School in Gwangju Gwangsan Radon gas Density Measurement (광주광역시 광산구 소재 초등학교 라돈가스 농도 계측)

  • Ahn, Byungju;Oh, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • Radium is rock or soil of crust or uranium of building materials after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. In this study, the air in the elementary school classroom nongdoeul tonkatsu place of measured values were compared using the calculated annual internal radiation exposure. La tonkatsu exposure measured in primary school classroom at least five schools when you close the windows in the average floor 0.56mSv 2 floors ground floor windows when opened 0.384mSv 048mSv 3 floors, 2 floor levels of the same three layers 0.31mSv 0.296mSv the human exposure to radon and radiation on the first floor of 3 floors above ground in a lot of exposure was moderate. When you close the window from the first floor up 0.384mSv 056mSv 3 floors with a minimum annual radiation exposure due to natural radiation in the 16 to 23.3 percent minimum 2.4mSv accounted for. When I opened the window to the maximum annual radiation exposure 2.4mSv 0.296mSv 0.31mSv least a minimum of 12.3 to 12.91% accounted for Results suggest that more than five chodeunghakgyoeun La tonkatsu domestic radon measurements conducted below regulatory requirements and internal exposure has also fall within the normal range. People The less the radiation exposure to the human body because it reduces the impact in the classroom in elementary school vent windows often reduced to the maximum radon concentration in the air, if called tonkatsu be able to reduce radiation exposure for the immune system is weak and elementary will be helpful to experiment more in the future for the school authorities called tonkatsu investigation is done to him if the action to establish a more secure school building facilities is thought would be helpful.