• Title/Summary/Keyword: 내부유동제어

Search Result 136, Processing Time 0.023 seconds

Computations on Passive Control of Normal Shock-Wave/Turbulent Boundary-Layer Interactions (수직충격파와 난류경계층의 간섭유동의 피동제어에 관한 수치 해석)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • A passive control method of the interaction between a weak normal shock-wave and a turbulent boundary-layer was simulated using two-dimensional Navier-Stokes computations. The inflow Mach number just upstream of the normal shock wave was 1.33. A porous plate wall having a cavity underneath was used to control the shock-wave/turbulent boundary-layer interaction. The flows through the porous holes and inside the cavity were investigated to get a better understanding of the flow physics involved in this kind of passive control method. The present computations were validated by some recent wind tunnel tests. The results showed that downstream of the rear leg of the $\lambda$-shock wave the main stream inflows into the cavity, but upstream of the rear leg of the $\lambda$-shock wave the flow proceeds from the cavity toward to the main stream. The flow through the porous holes did not choke fur the present shock/boundary layer interaction.

  • PDF

Numerical Analysis of Flow Characteristies inside innes part of Fluid Control Valve System (유동해석을 통한 유체제어벨브 시스템의 내부 유동 특성 분석)

  • Son, Chang-Woo;Seo, Tae-Il;Kim, Kwang-Hee;Lee, Sun-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.160-166
    • /
    • 2018
  • The worldwide semi-conductor market has been growing for a long time. Manufacturing lines of semi-conductors need to handle several types of toxic gases. In particular, they need to be controlled accurately in real time. This type of toxic gas control system consists of many different kinds of parts, e.g., fittings, valves, tubes, filters, and regulators. These parts obviously need to be manufactured precisely and be corrosion resistant because they have to control high pressure gases for long periods without any leakage. For this, surface machining and hardening technologies of the metal block and metal gasket need to be studied. This type of study depends on various factors, such as geometric shapes, part materials, surface hardening method, and gas pressures. This paper presents strong concerns on a series of simulation processes regarding the differences between the inlet and outlet pressures considering several different fluid velocity, tube diameters, and V-angles. Indeed, this study will very helpful to determine the important design factors as well as precisely manufacture these parts. The EP (Electrolytic Polishing) process was used to obtain cleaner surfaces, and hardness tests were carried out after the EP process.

Vibration Control and Dynamic Stability of Pipes by means of Internal Flowing Fluid (내부 유동유체에 의한 송수관의 동적안정성과 진동제어)

  • 류봉조;정승호;엄재섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.550-554
    • /
    • 1995
  • The present paper deals with the dynamic stability and vibration suppression of a cantilevered flexible pipe with a concetrated mass under an internal fluid flow. The equations of motion are derived by energy expressions using Hamilton's pronciple, and some analytical results using Galerkin's method are presented. Finally, the vibration suppression technique by means of an internal fluid flow is demonstrated experimentally.

  • PDF

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

가시화를 이용한 SI 엔진의 연소 진단

  • 엄인용
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.115-154
    • /
    • 2005
  • SI 엔진의 연소특징은 비정상 난류 예혼합 화염이며 여기서 내부 유동은 직접 화염 전파에 영향을 미치며 난류와 거시적 유동의 패턴 모두 중요한 역할을 한다. 내연기관 연소에서 난류는 매우 중요한 역할을 하고 통상 엔진 속도($\approx$흡입유동 속도)에 비례하며 그 주요 역할은 고속 운전 시 해당 사이클 내에 연소가 완료되는 데 기여하지만 출력저하, 제어 및 측정 그리고 사이클 변동과 관련하여 실질적으로 난류 제어를 통한 엔진 성능 개선은 사실상 불가능하다. 실물 엔진의 성능 파라미터로 주로 유동의 거시적 거동이 사용되며 이 유동과 연료 분사계가 혼합기 분포 상태와 화염 전파 방향을 결정하여 최종적으로 엔진의 성능을 지배한다. 따라서 가시화를 통한 연소 진단도 이 현상에 주목할 필요가 있으며 거시적 파라미터를 성능에 연관하는 다양한 기법이 존재하고 이들은 매우 풍부한 데이터베이스를 통해 비교적 정확한 성능의 예측을 가능하게 하고 이 점에 주목한 엔진만 성공을 거두었다. 이 거시적 현상에 주목하여 가시화를 통해 성층화 현상을 실험적으로 해석한 예를 제시하였다. SI 엔진 가시화에서 기법보다 중요한 것은 현상의 이해이다. 이를 위해 성공적 가시화 진단을 위해서는 우선 현상에 대한 모델링이 필요하고 이 모델에서 가시화를 통해 규명 가능한 현상을 추출해 내는 것이다.

  • PDF

Influence of Electrode Position on Performance of Sparkjet Actuator Using Numerical Analysis (수치해석을 이용한 전극 위치에 따른 스파크제트 액츄에이터의 성능 연구)

  • Shin, Jin Young;Kim, Hyung-Jin;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.753-760
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator, which is a kind of active flow control actuator is considered as being high possibility for the supersonic flow control due to ejecting stronger jet compared to the other active flow control actuators. Sparkjet actuator generates high temperature and high pressure flow inside the cavity by using arc plasma and leads momentum by ejecting such flow through orifice or nozzle. In this research, numerical calculation of sparkjet actuator with respect to the location of electrodes which exists inside the cavity is conducted and the change of the performance of sparkjet actuator is suggested. As the location of electrodes goes closer to the bottom of the cavity, impulse is increased and the average pressure inside the cavity maintains higher. When the location of electrode is 25% and 75% of the entire cavity height, impulse is 2.515 μN·s and 2.057 μN·s, respectively. Each impulse is changed by about 9.92% and -10.09% compared to when the location of electrodes is 50% of the entire cavity height.

Effects of Mach Number on the Control of Supersonic Cavity Pressure Oscillations (초음속 공동내부의 압력진동 제어에 미치는 기류 마하수의 영향)

  • Shin, Choon-Sik;Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.119-122
    • /
    • 2009
  • Numerical computations were carried out to analyze the effect of inlet Mach number and sub-cavity on the control of cavity-induced pressure oscillations in two-dimensional supersonic flow. A passive control method wherein a sub-cavity was introduced on the front wall of a square cavity was studied for Mach numbers 1.50, 1.83 and 2.50. The results showed that sub-cavity is effective in reducing the oscillations at different inlet Mach numbers. The resultant amount of attenuation of pressure oscillations depended on the inlet Mach number, length of the flat plate, and the depth of the sub-cavity used as an oscillation suppressor.

  • PDF

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol;Lee, Yong-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.327-330
    • /
    • 2006
  • Numerical study on the passive control of the oblique shock wave/turbulent boundary-layer interaction control utilizing slotted plates over a cavity has been carried out. Numerical results have been compared with the experimental observations, such as pitot/wall surface pressures and Schlieren flow visualizations, obtained for the same boundary conditions. It was found that the present numerical results shows a good agreement with experimental data. Further, the effect of different slot configurations including various number, location and angle of slots on the characteristics of the interactions are also tested, focusing on the variation of the piot pressure and the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through cavity.

  • PDF

Numerical Analysis for Internal Leakage Flow Characteristics of Damped Bypass Valve (Damped Bypass Valve의 내부 누설 유동 특성 전산 해석)

  • Lee, Seawook;Kim, Daehyun;Kim, Sangbeom;Park, Sangjoon;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • A numerical analysis for the internal flow was carried out in order to analyze the leakage flow characteristics inside the damped bypass valve. This research has found that the valve characteristics became stable at above a specific temperature. Very small amount of leakage flow was occurred. But there was no effect in temperature. The more temperature fell, the more maximum pressure rate was increased.