• Title/Summary/Keyword: 내부온도

Search Result 2,664, Processing Time 0.031 seconds

Spalling and Internal Temperature Distribution of High Strength Column Member with Polypropylene Fiber Volume Fractions (폴리프로필렌섬유 혼입률에 따른 고강도콘크리트 기둥부재의 폭렬 및 내부온도 분포특성)

  • Won, Jong-Pil;Jang, Chang-Il;Lee, Sang-Woo;Kim, Heung-Youl;Kim, Wan-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.821-826
    • /
    • 2008
  • This study evaluated spalling and internal temperature distribution after elevated temperatures test for high strength concrete ($f_{ck}=60\;MPa$) column member with various polypropylene fiber volume fractions. The ISO-834 time-temperature curve was used for measurement of fire resistance properties. As the result of test, average internal temperature results indicated to low temperature in increased polypropylene fiber volume fraction. But, the highest internal temperature results show that does not difference in proportion of polypropylene fiber volume fractions.

Fluid/Particulate Heat Transfer Coefficient in a Continuous Flow Cooking System (연속살균장치에서의 액상/고상 식품간의 대류열전달계수 예측)

  • Choe, J.S.;Hong, J.H.;Koh, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • 우리가 소비하는 가공 식품은 위생상 안전하도록 살균처리가 이루어진다. 식품 내에 존재할 수 있는 유해 세균은 일정 살균온도에서 살균에 필요한 시간 동안 노출되면 사멸하며, 일반적으로 살균온도가 높을수록 살균에 필요한 시간은 단축된다. 연속살균장치는 혼합 및 저장탱크에 담겨진 식품을 점프로 이동시키면서 가열 열교환기에서 살균온도로 가열하고 단열관을 거치는 동안 살균온도를 유지시켜 살균을 완료한다. 또한 살균된 식품은 냉각용 열교환기에서 상온으로 냉각되며 이 과정에서 회수되는 열은 저장탱크에서 유입되는 식품의 예열에 사용되어 에너지 효율을 제고하는데 사용되기도 한다. 이와 같이 관을 이동하면서 가열되는 살균장치는 기존의 배치식 살균방법에 비하여 균일하게 가열이 이루어지므로 130C의 고온으로 살균할 수 있어서 살균에 필요한 시간을 수초에서 수십초 정도로 단축시킬 수가 있고 그에 따라 열손상을 크게 줄일 수 있다. 또한, 상온으로 냉각된 식품을 포장함으로써 저렴한 가격의 포장용기를 사용할 수 있고 상온에서 저장할 수 있으므로 저장비용이 저렴한 장점이 있다. 그러나, 가공식품에 고기나 야채와 같은 고체 상태의 식품이 함유된 경우에는 액상 식품이 열 교환기에서 순간 가열되며, 고상 식품은 액상식품과의 대류에 의한 열전달로 가열된다. 이 과정에서 고상식품은 이동관 내벽이나 다른 고상식품과 부딪치거나 회전하면서 이동관 내부에서 자유롭게 운동하게 된다. 이 과정에서 액상식품과의 상대이동 속도가 발생하여 이것이 대류열전달에 영향을 미치게 된다. 이 상대이동속도에 따른 대류 열전달계수는 고상식품의 내부온도 결정에 사용되는 연속살균장치의 중요한 설계인자이다. 대류열전달계수는 연속살균장치에서 자유로이 이동하는 고상식품의 중심부의 온도를 측정하여 결정할 수 있으나 이는 현실적으로 어렵다. 따라서 본 연구에서는 고정된 고상식품에 액상식품을 이동시켜 상대속도를 재현하고 액상식품의 온도와 고상식품의 중심온도를 측정하는 장치를 개발하였으며, 각 상대속도와 액상식품의 점도 별 대류열전달계수를 결정하는 프로그램을 유한차분법을 이용하여 개발하였다. 이 장치를 분당 15, 30, 40 리터의 유량에서 유체의 점도를 0에서 15 centipoise 사이의 세 수준에서 정육면체 소고기를 모델 고상식품으로 내부 온도분포를 측정하였으며, 유한차분법 프로그램으로 대류열전달계수를 결정하였다. 대류열전달계수는 792에서 2,107 W/m$^2$로 분석되었다. 대류열전달 계수는 액상식품과의 상대속도가 증가함에 따라서 증가하였고, 점도가 증가함에 따라서는 감소하였다.

Concrete Lining Behaviors of Subway Tunnels according to Temperature Variations (온도변화에 따른 지하철 터널의 콘크리트 라이닝 거동)

  • Yoo, Ji-Hyeung;Lee, Seung-Won;Kim, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.410-414
    • /
    • 2014
  • In this study, the behavior of urban subway tunnels is measured using instrumentation sensors installed in the lining concrete inside subway tunnels in order to analyze their behavior according to temperature variations. It is observed that the stresses of the concrete lining, tunnel convergence, and cracks change according to the temperature variations. However, the crack deformation differs depending on the size and status of the crack. In addition, this study proposes a correction formula for the lining stress and tunnel convergence through numerical analyses of the concrete lining according to the temperature variations. The results of this research can be used in the tunnel maintenance considering the tunnel behavior depending on the temperature variations in the tunnel.

Variation of Air Temperature Inside Carbonate Area Caves (석회암 지역에 분포하는 동굴의 내부 온도 변동 특성)

  • Kim, Lyoun;Park, Youngyun;Lee, Jonghee;Choi, Jaehun;Jung, Qyusung;Kim, Jungtae;Kim, Insu
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.1
    • /
    • pp.52-63
    • /
    • 2020
  • This study was conducted in order to evaluate the characteristics of air temperature fluctuation inside the Daegeumgul, Ondaldonggul, and Seongnyugul Caves, which are the most representative limestone caves in Korea, and also to assess the effects of air temperature on cave temperature. Temperature was measured hourly at three sites in Daegeumgul, Ondaldonggul, and Seongnyugul Caves from April 13 to June 25, 2019. Additionally, air temperature data for the areas around the caves was provided by the Meteorological Administration. Using this collected data, the basic statistical measure of fluctuation characteristics over time was ascertained, and time series analyses were performed. Wide variation of temperature was exhibited in the order of the cave entrance, the cave water inflow point, and the midpoint. Cave temperature was observed to increase gradually during the study period. There was a vast range in temperature at the Daegeumgul station located approximately 150 m outside the cave, but it remained nearly constant beyond the midpoint. Although the effect of air temperature was not significant due to the influence of visitors, the effect of air temperature on cave temperature gradually decreased from the entrance to the interior. At Ondaldonggul, there was a wide range in temperature recorded at the entrance due to the influence of air temperature, but it stayed almost constant in the interior. However, at the site where cave water flows into the cave, temperature was influenced by the cave water temperature. At Seongnyugul, there was a distinct fluctuation in temperature recorded at the cave entrance, while the middle of the cave remained nearly constant. Temperature fluctuated due to the air temperature at the entrance, while at the middle of the cave, measurements were expected to be affected to a greater extent by the lake water temperature than by the air temperature. However, this pattern was not observed. According to the time series analysis results, in all caves, fluctuations of air temperature affected cave temperature after approximately one hour. Cave size and structure, water presence, the entrance's size and shape, air flow, and visitor patterns can all influence cave temperature. Therefore, consideration of these factors is very important in the pursuit to clearly understand cave temperature characteristics.

One-Dimensional Heat Transfer Model to Predict Temperature Distribution in Voided slabs subjected to fire (화재 시 중공슬래브의 온도분포 예측을 위한 1방향 열전달 모델)

  • Chung, Joo-Hong;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • In general, a reinforced concrete slabs are known to have a high fire resistance performance due to thermal properties of concrete materials. However, according to previous research, the thermal behavior of voided slabs is reported to be different from that of conventional RC solid slabs, and the differences seem to be caused by the air layer formed inside the voided slab. Therefore, it is difficult to estimate the temperature distribution of the voided slab under fire by using the existing methods that do not take into account the air layer inside the voided slab. In this study, a numerical analysis model was proposed to estimate the temperature distribution of voided slabs under fire, and evaluated. Heat transfer of slabs under fire is generally caused by conduction, convection and radiation, and time-dependent temperature changes of slab can be determined considering these phenomena. This study proposed a numerical method to estimate the temperature distribution of voided slabs under fire based on a finite difference method in which a cross-section of the slab is divided into a number of layers. This method is also developed to allow consideration of heat transfer through convection and radiation in air layer inside of slabs. In addition, the proposed model was also validated by comparison with the experimental results, and the results showed that the proposed model appropriately predicts the temperature distribution of voided slabs under fire.

Forecast on Internal Condensation at Balcony Ceiling of Super-high Apartment Building Faced with Open Air (외기에 면한 초고층 아파트 발코니 천정 내부결로 예측)

  • Choi Yoon-Ki;Ahn Jae-Bong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.155-163
    • /
    • 2003
  • There are a growing number of cases to expand balconies of apartments faced with open air in order to enhance functional satisfaction and efficiency of dwelling space. In case of the balcony expansion at the floor, however, it is difficult to exclude a possibility of bringing about internal condensation due to the difference of temperature between indoor air and outdoor air caused by the Inflow of outer low-temperature air through the upper part of ceilings by failure in completely putting together the outer composite wall panels on the aluminum curtain walls installed at outer walls This study is to forecast possible occurrence of internal condensation around parapets and H-beam located at the inside of balcony ceilings on the uppermost floor of super-high apartment buildings faced with open air in order to provide dwellers with more comfortable environment in the related space and get rid of their uneasiness about the condensation. In this study, we estimated internal condensation, which vary in accordance with humidity pressure distribution, at curtain walls, stone panels or lower parts of slabs that constitute outer space of the residence and are weak against heat, through temperature forecast and temperature distribution interpretation program at normal two-dimension temperature

Characteristics Maintenance Internal Temperature of Apple and Portable Low-Temperature Container by Using Phase Change Materials (잠열재를 이용한 이동식 저온 컨테이너 및 사과의 내부온도 유지특성)

  • Kwon, Ki-Hyun;Kim, Jong-Hoon;Jeong, Jin-Woung
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • By considering the storage temperatures of agricultural products, three types of PCMs $(K_1$, $K_2$, $K_3$) were developed to be used in temperature ranges of $0{\sim}5^{\circ}C$, $5{\sim}10^{\circ}C$ and $10{\sim}15^{\circ}C$, $K_1$ PCM for $0{\sim}5^{\circ}C$ was developed by mixture of $C_{14}H_{30}$ and soduim polyacrylate, and $K_2$ PCM for $5{\sim}10^{\circ}C$ and $K_3$ PCM for $10{\sim}15^{\circ}C$ were mixture of $C_{14}H_{30}$, $C_{18}H_{38}$ and soduim polyacrylate with different composition ratio. 'The target temperatures of cold chain system were set at $7^{\circ}C$, $13^{\circ}C$, and $17^{\circ}C$ with $K_{1-3}$, $K_{2-3}$ and $K_{3-1}$ PCMs, respectively. The times to reach the target temperatures in the storage chamber were 21 hours, 18 hours, and 61 hours with $K_1$, $K_2$, and $K_3$ PCMs, respectively. The performances of natural convection type and forced convection of the temperature controlled portable container were analyzed Apples were stored in the portable container of $5^{\circ}C$, and temperatures at surface and center were measured. The initial temperature of the apple was $25^{\circ}C$. The temperatures of apple at the surface and the center were $15^{\circ}C$ and $16^{\circ}C$, respectively, after 5 hours with natural convection type. However, the temperatures at the surface and the center were already reached to $7^{\circ}C$ within 1 hour with forced convection type. The forced convection type showed the better performance and the temperatures of portable container were maintained more than 15 hours.

Fire Resistance Performance for Fiber Reinforced High Strength Concrete Column Member (폴리프로필렌 및 강섬유 보강 고강도 콘크리트 기둥부재의 내화성능)

  • Jang, Chang-Il;Lee, Sang-Woo;Choi, Min-Jung;Kim, Joon-Mo;Kim, Heung-Youl;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.457-460
    • /
    • 2008
  • This study evaluated fire resistance performance for polypropylene/steel fiber reinforced high strength concrete column. Full-size columns were constructed and tested with or without fibers using ISO-834 fire curve. As the result of test, non-fiber high strength concrete column specimen occurred serious spalling and indicated rapidly internal temperature increase. Specimen with polypropylene fiber occurred not spalling. Specimen with hybrid fiber occurred not spalling as well as does not propagated temperature propagation. Therefore, hybrid fiber reinforced column specimen indicated a good fire resistance performance than other cases.

  • PDF

Feed Bin impact of ventilation on the temperature and humidity management (피드빈 온습도 관리에 미치는 환기 시스템의 영향)

  • Kim, Jeong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6432-6438
    • /
    • 2015
  • In this paper, we analyzed by measuring the temperature and humidity inside of the Feed Bin, NV, EA, SA, $SA{\cdot}EA$, by applying the ventilation system offers an efficient management of the operating direction. In the period the target is not input and feed period to make a change in the Feed Bin within the temperature and humidity of the outdoor air temperature and relative humidity compared to accept the ventilation system. Internal temperature over a comparison of the external temperature and the relative humidity is $SA{\cdot}EA$, internal humidity can verify the efficiency and NV, SA ventilation applied.