• Title/Summary/Keyword: 내구강도

Search Result 1,090, Processing Time 0.03 seconds

Modelling on the Carbonation Rate Prediction of Non-Transport Underground Infrastructures Using Deep Neural Network (심층신경망을 이용한 비운송 지중구조물의 탄산화속도 예측 모델링)

  • Youn, Byong-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.220-227
    • /
    • 2021
  • PCT (Power Cable Tunnel) and UT (Utility Tunnel), which are non-transport underground infrastructures, are mostly RC (Reinforced Concrete) structures, and their durability decreases due to the deterioration caused by carbonation over time. In particular, since the rate of carbonation varies by use and region, a predictive model based on actual carbonation data is required for individual maintenance. In this study, a carbonation prediction model was developed for non-transport underground infrastructures, such as PCT and UT. A carbonation prediction model was developed using multiple regression analysis and deep neural network techniques based on the actual data obtained from a safety inspection. The structures, region, measurement location, construction method, measurement member, and concrete strength were selected as independent variables to determine the dependent variable carbonation rate coefficient in multiple regression analysis. The adjusted coefficient of determination (Ra2) of the multiple regression model was found to be 0.67. The coefficient of determination (R2) of the model for predicting the carbonation of non-transport underground infrastructures using a deep neural network was 0.82, which was superior to the comparative prediction model. These results are expected to help determine the optimal timing for repair on carbonation and preventive maintenance methodology for PCT and UT.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Material Characteristics and Deterioration Assessment for Multi-storied Round shape Stone Pagoda of Unjusa Temple, Hwasun, Korea (화순 운주사 원형다층석탑의 재질특성과 훼손도 평가)

  • Park, Sung Mi;Lee, Myeong Seong;Kim, Jae Hwan;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.86-101
    • /
    • 2012
  • The constituting rocks of Multi-storied Round shape stone Pagoda of Unjusa Temple are lithic tuff and rhyolite tuff breaccia which show green or grey and also rock fragment with poor roundness are present in the structure. lithic tuff is composed of feldspar and quartz which are glassy texture and cryptocrystalline and also micro crystalline are scattered. phenocryst quartz and feldspar in the substrate composed of feldspar and opaque minerals are found in rhyolite tuff breaccia. dust, exfoliation, cavity, fracture and crack are observed in all the stone of the pagoda and the result of Infrared Thermography shows partial inter cavities have developed severely which may cause further exfoliation. In addition, a great deal of various grey, green, and yellow brown lichen as well as bryophyte are present at the upper part of eastern and western roof stone located above the third floor. Discolors remarkably shown at stereobate and roof stone are identified as inorganic pollutants such as manganese oxide, iron oxide and iron hydroxide. The stone of the pagoda of the Chemical Index of Alteration (CIA) and the Weathering Potential Index (WPI) are 55.69 and 1.12 respectively and this corresponds to a highly weathered stage. The measured values, average ultrasonic velocity 2,892m/s, coefficient of weathering 0.4k and compressive strength $1,096kg/cm^3$, suggest that the rock strength and durability are weakened.

A Study on Performance Evaluation of Early-age Concrete with EOS Fine Aggregate and GGBFS (EOS 잔골재 및 GGBFS를 혼입한 초기재령 콘크리트의 성능 평가에 관한 연구)

  • Kwon, Seung Jun;Cho, Sung Jun;Lim, Hee Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.113-119
    • /
    • 2019
  • Many researches on alternative materials as construction materials is continuing by recycling industrial byproducts due to shortage of sitereclamation and natural aggregates. In this paper, engineering properties in early-aged OPC (Ordinary Portland Cement) and GGBFS (Ground Granulated Blast Furnace Slag) concrete are evaluated with EOS aggregate replacement. The related experiments were carried out with 0.6 of water to binder ratio, three levels of EOS replacement ratios (0%, 30% and 50%) for fine aggregate, and two levels of cement replacement with GGBFS (0% and 40%). Several tests such as slump air content, and unit mass measurement are performed for fresh concrete, and compressive strength and diffusion coefficient referred to NT BUILD 492 method are measured for hardened concrete. Through the tests, it was evaluated that the compressive strength in concrete with EOS aggregate increased to 3 days and 7 days but slightly decreased at the age of 28 days. In the accelerated chloride penetration test, GGBFS concrete showed reduced diffusion coefficients by 60 - 67% compared with OPC concrete. The lowest chloride diffusion coefficient was evaluated in the 50% replacement with EOS aggregate, which showed an applicability of EOS aggregate to concrete production.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

A Study for Field Application of Environmental-friendly Waterproof Method for Riverbed (친환경 하상차수공법 현장 적용성에 관한 연구)

  • Park, Minchul;Kim, Seonggoo;Kwak, Nokyung;Shin, Hyohee;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • In period of rapid economic development, as doing river conservation work by using harmful materials environmental pollution has adversely effected humans, animals and plants frequently. For recovery of environmental pollution it needs a lot of time and cost. Therefore, in this study, in order to take an environment-friendly method which is also economical and durable both results of the laboratory model test and field test were compared and analyzed. According to the results of the laboratory model test, those methods such as concrete paving, asphalt paving, bentonite mat, stabilized soil method and mixed soil method have small amount of seepage, but on the other hand compaction soil, grassland and permeable materials have considerable amount of seepage. The results of field test show a similar tendency with laboratory test and have been satisfied to assess standard of domestic water permeability below $1.0{\times}10^{-7}cm/sec$ and unconfined compressive strength is also than 1.0MPa so it has been satisfied about standard. In conclusion, as compaction rate increased, as unconfined compression strength increased and coefficient of permeability decreased.

An Experimental Study on the Mechanical Healing Properties of Self-Healing Mortar with Solid Capsules Using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 역학적 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Oh, Sung-Rok;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.581-589
    • /
    • 2020
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction, the quality and mechanical healing properties of self-healing mortar with solid capsules were evaluated. Solid capsules were mixed 5% by mass of cement. Reloading test results of compressive load, it was found to improve about 20% on average for the natural healing effect of Plain, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Reload test results of flexural load, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Through these results, it is judged that the healing performance of solid capsules has also an effect on mechanical healing properties such as strength in addition to the durability properties obtained by the permeability test. Since the strength tends to decrease as the solid capsules are mixed, it is considered necessary to compensate.

Water Repellent Characteristics According to the Surface Properties of Cement Mortar Mixed with Water-soluble Water Wepellent (표면 성상에 따른 수용성 발수제 혼입 시멘트 모르타르의 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Hong, Seong-Uk;Yang, Seung-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.42-49
    • /
    • 2020
  • This paper is a basic study to improve durability by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement mortar to which a silane/siloxane-based mixed water repellent was added was prepared, and its initial hydration performance, flow performance, and compressive strength were measured. In addition, after the surface was abraded, the water contact angle and water absorption were measured. The flow of cement mortar to which the water repellent was added was found to decrease up to 1.5% in the addition amount of the water repellent agent, and increased at 3.0% in the addition amount. It was found that the setting time of the cement paste was delayed in both the initial setting and the termination when the water repellent was added. It was found that the compressive strength decreased from 3.0% of the maximum added amount of the water repellent to a maximum of 30%. The contact angle was found to increase when the water repellent was added to the cement mortar, and the contact angle after surface polishing was found to be larger than before surface polishing. The addition of the water repellent showed hydrophobicity not only on the surface but also on the surface and cross section damaged by polishing. The water absorption rate was found to decrease when the water repellent was added to the cement mortar, and the water absorption rate after surface polishing was found to be greater than before surface polishing.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.