• Title/Summary/Keyword: 납 차폐체

Search Result 77, Processing Time 0.021 seconds

The Evaluation of Eye Dose and Image Quality According to The New Tube Current Modulation and Shielding Techniques in Brain CT (두부 CT에서 차폐기법과 새로운 관전류변조기법에 따른 눈의 선량과 화질평가)

  • Kwon, Soonmu;Kim, Jungsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.279-285
    • /
    • 2015
  • The eye of human is a radiation sensitive organ and this organ should be shielded from radiation exposure during brain CT procedures. In the brain CT procedures, bismuth protector using to reduce the radiation exposure dose for eye. But protecting the bismuth always accompanies problem of the image quality reduction including artifact. This study aim is the eye radiation exposure dose and image quality evaluation of the new tube current modulation such as new organ based-tube current modulation, longitudinal-TCM, angular-TCM between shielding scan technique using bismuth and lead glasses. As a result, radiation dose of eye is reduced 25.88% in new OB TCM technique then reference scan technique and SNR new OB TCM is 6.05 higher than bismuth shielding scan technique and lower than reference scan technique. In clinical brain CT, new OB TCM technique will contribute to reduction of radiation dose for eye without decrease of image quality.

Shielding Design of Shipping Cask for 4 PWR Spent Fuel Assemblies (PWR집합체 4개 장전용 수송용기의 차폐설계)

  • Kang, Hee-Yung;Yoon, Jung-Hyoun;Seo, Ki-Seog;Ro, Seung-Gy;Park, Byung-Il
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.65-70
    • /
    • 1988
  • A Shielding analysis of the shipping cask designed conceptually, of which shielding material are lead and resin, for containing 4 PWR spent fuel assemblies, has been made with the help of a computer code, ANISN. The shielding materials being used in the cask have been selected and arranged to minimize cask weight while maintaining an overall shielding effectiveness. Radiation source terms have been calculated by means of ORIGIN-2 code under the assumptions of 38,000 MWD/MTU burnup and 3-year cooling time. A calculation of gamma-ray and neutron dose rates on the cask surface and 1m from the surface has been done. It is revealed that the total dose rates under the normal transport and hypothetical accident conditions meet the standards specified.

  • PDF

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Evaluation of Shielding Performance of Tungsten Containing 3D Printing Materials for High-energy Electron Radiation Therapy (고에너지 전자선 치료 시 텅스텐 함유 3D 프린팅 물질의 차폐 성능 평가)

  • Yong-In Cho;Jung-Hoon Kim;Sang-Il Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.641-649
    • /
    • 2023
  • This study compares and analyzes the performance of a shield manufactured using 3D printing technology to find out its applicability as a shield in high-energy electron beam therapy. Actual measurement and monte carlo simulations were performed to evaluate the shielding performance of 3D printing materials for high-energy electron beams. First, in order to secure reliability for the simulation, a source term evaluation was conducted by referring to the IAEA's TRS-398 recommendation. Second, to analyze the shielding performance of PLA+W (93%), a specimen was manufactured using a 3D printer, and the shielding rate by thickness according to electron beam energy was evaluated. Third, the shielding thickness required for electron beam treatment was calculated through a comparative analysis of shielding performance between PLA+W (93%) and existing shielding bodies. First, as a result of the evaluation of the source term through actual measurement and simulation, the TRS-398 recommendation was satisfied with an error of less than 1%, thereby securing the reliability of the simulation. Second, as a result of the shielding performance analysis for PLA+W (93%), 6 MeV electron beams showed a shielding rate of more than 95% at 3.12 mm, and 15 MeV electron beams showed a shielding rate of more than 90% at 10 mm thickness. Third, through simulations, comparative analysis between PLA+W (93%) materials and existing shields showed high shielding rates within the same thickness in the order of tungsten, lead, copper, PLA+W (93%), and aluminum. 6 MeV electron beams showed almost similar shielding rates at 5 mm or more and 15 MeV electron beams. Through this study in the future, it is judged that it can be used as basic data for the production and application of shielding bodies using PLA+W (93%) materials in high-energy electron beam treatment.

Development of Shielding using Medical Radiological Contrast Media; Comparison Analysis of Barium Sulfate Iodine Shielding ability by Monte Carlo Simulation (의료방사선 조영제를 이용한 차폐체 개발; 몬테카를로 시뮬레이션을 통한 황산바륨과 요오드의 차폐능 비교분석)

  • Kim, Seon-Chil
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.329-334
    • /
    • 2017
  • The purpose of this study is to estimating the possibility of manufacturing radiation shielding sheet by searching for environmentally friendly materials suitable for medical environment of medical radiation shielding. There are many tungsten products which are currently used as shielding materials in place of lead, but there are small problems in the mass production of lightweight shielding sheets due to economical efficiency. To solve these problems, a lightweight, environmentally friendly material with economical efficiency is required. In this study, Barium sulphate and Iodine were proposed. Both materials are already used as contrast medias in radiography, and it is predicted that the shielding effect will be sufficient in a certain region as a shielding material because of the characteristic of absorbing radiation. Therefore, in this study, we used a Monte Carlo simulation to simulate radiation shielding materials. When it is a contrast agent such as Barium sulfate and Iodine, the radiation absorption effect in the high energy region appears greatly, and the effectiveness of the two shielding substance in the energy region of the star with thickness of 120 kVp is also evaluated in the medical radiation imaging region. Simulated estimation results it was possible to estimate the effectiveness of shielding for all two substances. Iodine has higher shielding effect than barium sulfate, 0.05 mm thick appears great effect. Therefore, the Monte Carlo simulation confirms that iodine, which is a radiological contrast agent, is also usable as barium sulfate in the production of radiation shielding sheets.

Response for Lead Block Thickness of Parallel Plate Detector using Dielectric Film (유전체필름을 이용한 평행판검출기의 납 차폐물 두께변화에 대한 반응)

  • Kim Yong-Eun;Cho Moon-June;Kim Jun-Sang;Oh Young-Kee;Kim Jhin-Kee;Shin Kyo-Chul;Kim Jeung-Kee;Jeong Dong-Hyeok;Kim Ki-Hwan
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • A parallel plate detector containing PTFE films in FEP film for relative dosimetry was designed to measure the response of detectors to S and 10 MV X-rays from a medical linear accelerator through different thicknesses of lead. The dielectric materials were 100 m thick. The set-up conditions for measurements with this detector were as follows: SSD=100 cm the test detector was at a depth of 5 cm and the reference chamber was at a depth of 10 cm from the phantom surface for 6 and 10 MV X-rays. Lead blocks were designed to cover the irradiated field. They were added to the tray to increase thickness sequentially. We found that the detector response decreased exponentially with the thickness of lead added. The linear attenuation coefficients of the test detector and reference chamber were 0.1414 and 0.541, respectively, for 6 MV X-rays and 0.1358 and 0.5279 for 10 MV X-rays. The test detector response was greater than that of the reference chamber. The response function was calculated from the measured values of the test detector and reference chamber using optimization. These optimized constants for the detector response function were independent of theenergy. As a result of optimizing the response function between detectors, the use of a relative dosimeter was validated, because the response of the test detector was 1% for 6 MV X-rays and 4% for 10 MV X-rays.

  • PDF

Case Report of Radiotherapy to a Breast Cancer Patient with a Pacemaker (인공심장박동기가 이식된 유방암환자의 방사선 치료에 대한 사례 보고)

  • Chae, Seung-Hoon;Park, Jang-Pil;Lee, Yang-Hoon;Yoo, Suk-Hyun;Seong, Won-Mo;Kim, Kyu-Bo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • Purpose: In this study, we considerate our radiation therapy process for the breast cancer patient implanted a pacemaker applying the machine movement surgery, shielding, beam selection. Materials and Methods: We perform radiation therapy to a 54 years old, breast cancer patient implanted a pacemaker. The patient underwent a surgery to move the position of a pacemaker to right side breast after consultation with cardiology department. Prescribed dose was 5,040 cGy and daily dose 180 cGy for 28 fractions. The 10 MV photon energy, field size 0/$9.5{\times}20$ cm, half beam and opposing portal irradiation are used. To find out appropriate thickness of shielding board, we carried out an experiment using a solid water phantom ($30{\times}30{\times}7$ cm), a Farmer-type chamber (TN30013, PTW, Germany) and a shielding board (Pb $28{\times}27{\times}0.1$ cm). We calculated expected absorbed dose to te pacemaker with absorb ratio and shielding ratio. In the PTP system (Eclipse, Varian, USA), we figured out how much radiation would be absorbed to the machine with and without shielding. First day of the radiation therapy, we measured head scatter to the pacemaker with MOSFET Dose Verification System (TN-RD-70-W, Medical Canada Ltd., Canada). Results: In the phantom measurement, we found out appropriate thickness was 2 mm of shielding board. In the RTP, when using 2 mm shielding the pacemaker will be absorbed 11.5~38.2 cGy and DVH is 77.3 cGy. In the first day of the therapy, 4.3 cGy was measured so 120.4 cGy was calculated during total therapy. The patient was free from any side effects, and the machine also normally functioned. Conclusion: As the report of association which have public confidence became superannuated, there is lack of data about new machine. We believe that radiation therapy to thiese kind of patients could be done successfully with co-operation, patient-suitable planning, accurate QA, frequent in-vivo dosimetry and monitoring.

  • PDF

Evaluation of the Shield Performance of Lead and Tungsten Based Radiation Shields (납과 텅스텐 기반 차폐체의 성능 비교 평가)

  • Jeong-Hwan Park;Hyeon-Seong Lee;Eun-Seo Lee;Hyo-Jeong Han;Yun-Hee Heo;Jae-Ho Choi
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2023
  • This study was intended to evaluate the shielding rate of radiation shields manufactured using 3D printers that have recently been used in various fields by comparing them with existing shields made of lead, and to find out their applicability through experiments. A 3D printer shield made of tungsten filament 1 mm, 2 mm, 4 mm shield, RNS-TX (nanotungsten) 1.1 mm, lead 0.2 mmPb, and 1mmPb were exposed to 99mTc, 18F, and 201TI for 15, 30, 45 minutes, and 60 minutes after measuring cumulative dose three times. Based on this, the shielding rate of each shield was calculated based on the dose in the absence of the shield. In addition, 99mTc, 18F, and 201TI were located 100 cm away from the phantom in which the OSLD nano Dot device was inserted, and if there was no shield for 60 minutes, the dose of thyroid was measured using 1.0 mm of lead shield, 1.1 mm of RNS-TX shield, and 2 mm of tungsten shield made by 3D printer. The use of shields during radiation shielding emitted from open radiation sources all resulted in a reduction in dose. The radiation dose emitted from the radionuclides under the experiment was all reduced when the shield was used. This study has been confirmed that tungsten is a material that can replace lead due to its excellent performance and efficiency as shield, and that it even shows the possibility of manufacturing a customized shield using 3D printer.

Fundamental Properties and Radioactivity Shielding Characteristics of Mortar Specimen Utilizing CRT Waste Glass as Fine Aggregate (폐 브라운관(CRT) 유리를 잔골재로 대체한 모르타르 시험체의 기초 물성 및 방사선 차폐 특성)

  • Choi, Yoon-Suk;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.163-170
    • /
    • 2019
  • In recent years, various types of industrial wastes are rapidly increasing with the development of high-tech industries. Specially, high-density waste glass of CRT TV containing heavy metals are buried or disposed of due to reprocessing costs and environmental pollution problems. Thus, more basic research is needed to recycle waste such as CRT waste glass such. In this study, the fundamental properties and radiation shielding performance of mortar specimens substituted CRT waste glass as a fine aggregate were analyzed and their application to shielding materials was evaluated. According to the results, the bulk density of mortar specimen replaced with CRT waste glass was increased and the compressive strength and flexural strength were decreased. Meanwhile, the CRT waste glass substitute specimen containing a large amount of lead component showed a higher shielding performance than the general mortar specimen. Especially, the linear attenuation coefficient of CRT waste glass in $122KeV{\cdot}^{57}Co$ of the low energy field was 2.5 times higher than that of normal specimen.

A Study on Reduction of Radiation Exposure by Nuclear Medicine Radiation Workers (핵의학 방사선 작업종사자 피폭 감소 방안에 대한 연구)

  • Lee, Wanghui;Ahn, Sungmin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.271-281
    • /
    • 2019
  • This study investigated the shielding efficiency of various types of shielding materials and measured the dose by organ using the phantom. Results of Shielding Efficiency Measurement Using Personal Radiation Meter. Among the various shielding materials, 1.1 mm RNS-TX composed of nano tungsten showed the highest shielding efficiency and 0.2 mm lead shielding showed the lowest shielding efficiency. 99mTc 30 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 20.53 mSv without radiation protective clothing, 8.75 mSv when wearing 0.25 mm Pb protective clothing, 6.03 mSv when wearing 0.5 mm Pb protective clothing. 131I 2 mCi mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 7.71 mSv without radiation protective clothing, 4.88 mSv when wearing 0.25 mm Pb protective clothing, 2.79 mSv when wearing 0.5 mm Pb protective clothing. 18F 5 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 16.39 mSv without radiation protective clothing, 15.84 mSv when wearing 0.25 mm Pb protective clothing, 12.52 mSv when wearing 0.5 mm Pb protective clothing. None of the radiation workers working in the nuclear medicine department exceeded the dose limit. However, when compared with other workers in the hospital, they showed a relatively high dose. Therefore, it is necessary to prepare measures to reduce and manage the dose of radiation workers in the nuclear medicine department through the wearing of radiation protective clothing made of lightweight, shielding material with good shielding efficiency, circulation task, task sharing, and substitution equipment such as auto dispenser.