• Title/Summary/Keyword: 남방진동

Search Result 34, Processing Time 0.031 seconds

Seasonal Relationship between El Nino-Southern Oscillation and Hydrologic Variables in Korea (ENSO와 한국의 수문변량들간의 계절적 관계 분석)

  • Chu, Hyun-Jae;Kim, Tae-Woong;Lee, Jong-Kyu;Lee, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.299-311
    • /
    • 2007
  • Climatic abnormal phenomena involving El Nino and La Nina have been frequently reported in recent decades. The interannual climate variability represented by El Nino-Southern Oscillation (ENSO) is sometimes investigated to account for the climatic abnormal phenomena around the world. Although many hydroclimatologists have studied the impact of ENSO on regional precipitation and streamflow, however, there are still many difficulties in finding the dominant causal relationship between them. This relationship is very useful in making hydrological forecasting models for water resources management. In this study, the seasonal relationships between ENSO and hydrologic variables were investigated in Korea. As an ENSO indicator, Southern Oscillation Index (SOI) was used. Monthly precipitation, monthly mean temperature, and monthly dam inflow data were used after being transformed to the standardized normal index. Seasonal relationships between ENSO and hydrologic variables were investigated based on the exceedance probability and distribution of hydrologic variables conditioned on the ENSO episode. The results from the analysis of this study showed that the warm ENSO episode affects increases in precipitation and temperature, and the cold ENSO episode is related with decreases in precipitation and temperature in Korea. However, in some regions, the local relationships do not correspond with the general seasonal relationship.

Interrelation Analysis between ENSO Index and Hydrologic Variables (자료의 표준화를 통한 ENSO 지수와 수문변량의 상관관계분석)

  • Chu, Hyun-Jae;Kim, Tae-Woong;Lee, Jong-Kyu;Wi, Sung-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1520-1524
    • /
    • 2006
  • ENSO(El $Ni\check{n}o$ Southern Oscillation)은 태평양상의 해양과 대기간의 복잡한 상호작용의 일부이며, ENSO 순환(ENSO cycle)의 극한상태인 엘니뇨와 라니냐는 세계적으로 발생하는 홍수와 가뭄 등 자연재해와 많은 연관성을 가지고 있음이 많은 연구를 통하여 알려지고 있다. 우리나라에서도 ENSO와 수문변량들간의 관계를 분석하는 연구가 활발히 진행되고 있는데, 수문자료의 변동계수가 크기 때문에 이를 단순 표준화하여 해석하는데 있어 어려움이 있다. 본 연구에서는 자료의 표준정규분포화를 통하여 ENSO와 우리나라 수문변량들간의 관계를 분석하였다. ENSO를 정량적으로 표준지수화하기 위하여 적도부근 남태평양 Tahiti섬과 오스트레일리아 북부 Darwin 지역에서의 기압차를 월별로 표준화(standardization)한 SOI(Southern Oscillation Index)지수를 이용하였고, 수문자료를 정량적으로 표준지수화하기 위하여 우리나라 23개 기상관측소의 월강수량, 12개 기상관측소의 월평균기온, 월최저기온, 월최고기온 자료를 이용하여 표준정규분포를 가지는 표준정규지수로 환산하였다. 환산된 자료의 계절적 영향을 파악하고자 3개월 단위로 구분하여, 초과확률 등을 이용한 분석을 실시한 결과, 특정지역의 수문변동이 남방진동지수와 유의한 상관관계를 가짐을 확인할 수 있었다. 이러한 결과는 현재 많은 연구가 진행되고 있는 수문기상학적 예측모형의 개발에 유용한 정보를 제공해 줄 수 있을 것이다.

  • PDF

Relationship between EI Ni o/Southern Oscillation and Drought in Korea (엘니뇨/남방진동과 한국의 가뭄과 관계)

  • Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 1999
  • The relationship between EI Nino-Southern Oscillation(ENSO) and drought in Korea is investigated using the cross correlation analysis. In this paper, Palmer Drought Severity Index(PDSI) is used as an index of drought and nine ENSO indicators are used. To obtain PDSI for Korea, the PDSI equation is derived using monthly precipitation and temperature in Korea. In addition, ENSO composite percentile analyses for PDSI, precipitation and streamflow in Korea are performed to verify the results of the cross correlation. Results of the cross correlation show that the link between drought in Korea and ENSO is statistically significant with 6% of the variance in PDSI for Korea explained by ENSO. The PDSI is negatively correlated with the equatorial Pacific Sea Surface Temperature and the Sea Level Pressure(SLP) at Darwin leading by about 16 months. However, the relationship of the PDSI with the Southern Oscillation Index and the SLP at Tahiti is positive correlation. The ENSO composite percentile analyses show that drought, precipitation and streamflow in Korea are associated with ENSO during 6 months from December of the ENSO ending year

  • PDF

Effects of El Nino-Southern Oscillation (ENSO) on Tree Growths in Central Korea (한반도 중부지역 수목생장에 미치는 엘니뇨-남방진동(ENSO)의 영향)

  • ;;;N. Pumijumnong
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • To examine the effects of El Nino-Southern Oscillation (ENSO) on the tree growths of central Korea, tree rings of Korean pine(Pinus koraiensis) , Japanese red pine (Pinus densiflora) and yew (Taxus cuspidata) were analyzed. Korean pine and red pine samples were collected from 4 and 7sites in Sorak Mountain ranges, respectively ; yew from one site in Sobaek Mountain. Correlations between ring-width and monthly temperature data showed generally positive relationships for the Korean pine and yew chronologies, but negative ones for the red pine chronologies. In the analysis of correlation between ring-width and monthly S0 index data, only one Korean pine chronology at the lower Hangaerung valley site, and one red pine chronology at Baekdamjang shelter site showed significant relationships ; negative with April SOI for the former and positive with previous August-September SOI for the latter. The other chronologies at higher elevation sites did not indicate any significant correlations with SOI.

  • PDF

El Niño-Southern Oscillation, Indian Ocean Dipole Mode, a Relationship between the Two Phenomena, and Their Impact on the Climate over the Korean Peninsula (엘니뇨-남방진동, 인도양 쌍극자 모드, 두 현상의 관련성, 그리고 한반도 기후에 대한 영향)

  • Cha, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • This paper investigated the relationship between El $Ni\widetilde{n}o-Southern$ Oscillation (ENSO) and Indian Ocean Dipole (IOD) mode events and the impacts of these two phenomena on the climate, temperature and precipitation, of the Korean Peninsula. Data gathered from 1954 to 2004 were used for analysis, which included NINO 3 index, IOD index, and monthly mean precipitation and temperature at eleven locations in Korea. Statistical results showed that the IOD and ENSO were significantly correlated in Spring and Fall. It was clearly shown that the distribution of the sea surface temperature in the Indian Ocean has seen the Southern and Northern Oscillation in El $Ni\widetilde{n}o$ year, and Eastern and Western in IOD year. On the other hand, in El $Ni\widetilde{n}o$ you, the mean temperature of the Korea Peninsula was lower than normal in Summer and higher in Winter and its precipitation was more than normal in both Summer and Winter. However, significant correlation was not found in IOD year. In addition, the global atmospheric circulations during the major IOD years are less influential, unlike those of El $Ni\widetilde{n}o$ events.

Statistical Analysis of NOAA/AVHRR High Resolution Weekly SST in the East Sea: Regional Variability and Relationships with ENSO (동해지역 NOAA/AVHRR 고해상도 주평균 해수면 온도의 통계적 분석 : 지역적 변동성과 엘니뇨/남방진동과의 관계성)

  • Kwon, Tae-Yong;Lee, Bang-Yong;Lee, Jeong-Soon
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.361-376
    • /
    • 2001
  • The characteristics of SST variability in the East Sea are analyzed using NOAA/AVHRR weekly SST data with about $0.18^{\circ}{\times}0.18^{\circ}$ resolution ($1981{\sim}2000$) and reconstructed historical monthly SST data with $2^{\circ}{\times}2^{\circ}$ resolution $(1950{\sim}1998)$. The distinct feature of wintertime SST is high variability in the western and eastern parts of $38^{\circ}{\sim}40^{\circ}$ latitudinal band, which are the northern boundary of warm current in the East Sea during winter. However, summertime SST exhibits variability with similar magnitude in the entire region of the East Sea. The analysis of remote correlation also shows that SST in the East Sea is closely correlated with that in the region of Kuroshio in winter, but in summer is related with that in the western and eastern regions of the same latitudes. From these results it is postulated that the SST variability in the East Sea may be related with the variations of East Korean Warm Current and Tsushima Warm Current in winter, but in summer probably with the variations of atmospheric components. In the analysis of ENSO related SST anomaly, a significant negative correlation between SST anomalies in the East Sea and SST anomalies in the tropical Pacific is found in the months of August-October (ASO). The SST in the ASO period shows more significant cooling in E1 $Ni\~{n}o$ events than warming in La $Ni\~{n}a$ events. Also, the regional analysis shows by the Student's t-test that the negative SST anomalies in the E1 $Ni\~{n}o$ events are more significant in the southwestern part of the East Sea.

  • PDF