• 제목/요약/키워드: 날씨 특징

검색결과 54건 처리시간 0.033초

싱글 야외 영상에서 계층적 이미지 트리 모델과 k-평균 세분화를 이용한 날씨 분류와 안개 검출 (Weather Classification and Fog Detection using Hierarchical Image Tree Model and k-mean Segmentation in Single Outdoor Image)

  • 박기홍
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1635-1640
    • /
    • 2017
  • 본 논문에서는 싱글 야외 영상에서 날씨 분류를 위한 계층적 이미지 트리 모델을 정의하고, 영상의 밝기와 k-평균 세분화 영상을 이용한 날씨 분류 알고리즘을 제안하였다. 계층적 이미지 트리 모델의 첫 번째 레벨에서 실내와 야외 영상을 구분하고, 두 번째 레벨에서는 야외 영상이 주간, 야간 또는 일출/일몰 영상인지를 밝기 영상과 k-평균 세분화 영상을 이용하여 판단하였다. 마지막 레벨에서는 두 번째 레벨에서 주간 영상으로 분류된 경우 에지 맵과 안개 율을 기반으로 맑은 영상 또는 안개 영상인지를 최종 추정하였다. 실험 결과, 날씨 분류가 설계 규격대로 수행됨을 확인할 수 있었으며, 제안하는 방법이 주어진 영상에서 효과적으로 날씨 특징이 검출됨을 보였다.

AR환경에서 정확하고 효율적인 장애물 인지를 위한 DB기반의 특징점 매칭 (DB-based Feature Point Matching for Accurate and Efficient Obstacle Recognition in AR Environment)

  • 박정우;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.377-380
    • /
    • 2022
  • 본 논문에서는 모바일 기반 AR 환경에서 RGB카메라로부터 얻은 영상 분석과 DB 기반의 특징점(Feature point) 매칭을 통하여 보다 정확하게 위험 상황을 알려줄 수 있는 프레임워크를 제안한다. 본 논문에서는 RANSAC(Random sample consensus)기반의 다중 평면 방식을 이용한 특징점을 추출하고 분석하여 영상에 존재하는 장애물을 감지한다. RGB카메라로 얻은 영상을 기반으로 장애물을 검출하는 접근법은 영상에 의존하기 때문에 조명에 따른 특징점 검출이 부정확하고, 조명이나 자연광 또는 날씨에 영향을 많이 받기 때문에 어둡거나 흐린 날씨에서는 장애물 검출이 어려워진다. 이 문제를 완화하기 위해 본 논문에서는 DB기반의 특징점 매칭을 통해 조명에 관계없이 장애물을 효율적이고 정확하게 감지한다. 특징점 매칭을 이용하려면 우선 영상에서 특징점이 안정적으로 추출될 수 있는 환경인, 조명이나 자연광이 충분한 환경에서 감지된 장애물 정보를 데이터베이스화 하여 저장한다. 조명이 충분하지 않은 환경에서 사용자가 사전에 저장된 지역에 근접할 경우 특징점 분석이 아닌 DB 기반 특징점 매칭을 통해 위험 요소를 감지한다. 우리의 방법은 조명의 여부의 관계없이 효과적으로 위험을 감지할 수 있기 때문에 다양한 분야에 활용될 수 있다.

  • PDF

바다경관 시청각 요소를 활용한 인터랙티브 스크린세이버 개발 연구 (Research on the development of Interactive Screen Saver utilizing audiovisual elements of marine)

  • 강혁
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2016년도 춘계 종합학술대회 논문집
    • /
    • pp.293-294
    • /
    • 2016
  • 이 연구는 바닷가에서 경험할 수 있는 시청각적 경험을 표현요소로 활용하여 일상생활에서 바다를 느낄 수 있도록 하는 인터랙티브 스크린세이버 제작에 관한 것이다. 특징적인 사항은 시스템의 시간에 따라 360도로 바다경관을 볼 수 있으며, 사용자의 감성은 날씨에 민감하다는 점에 착안하여 날씨의 표현을 다양화 하였고 바다의 소리를 동기화하여 호출하는 방식으로 제작하였다.

  • PDF

다양한 일기 조건하에서의 차량 추적 (A study on vehicle tracking under various weather conditions)

  • 송홍섭;소영성
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 2003
  • 영상 검지기를 통한 차량 탐지 방법은 날씨와 같은 환경에 민감하게 반응하여 차량의 미탐지 및 오탐지가 발생하게 된다. 이를 해결하기 위해 다양한 일기조건하에서 차량 추적 방법에 대해 제안한다. 다양한 일기 조건하에서의 차량 추적은 눈, 비, 안개 환경에서 각 날씨의 특징을 분석, 반영하여 차량을 탐지하고 추적한다. 눈이 내리는 환경에서는 눈이 카메라 가까이에서 차량 blob으로 잘못 탐지되는 blob을 제거하기 위해 카메라와의 거리에 따른 실제 크기를 구하는 size filtering 방법을 사용한다. 비, 안개 환경에서는 흐릿해진 영상 때문에 차량이 교통신호등에 의해 차량 정체시 여러 차량이 하나의 blob으로 탐지되는 문제점을 해결하기 위해 이전 영상에서의 차량 위치 정보를 이용한 재 blob화 방법을 사용한다.

  • PDF

날씨·조명 판단 및 적응적 색상모델을 이용한 도로주행 영상에서의 이정표 검출 (Road Sign Detection with Weather/Illumination Classifications and Adaptive Color Models in Various Road Images)

  • 김태형;임광용;변혜란;최영우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권11호
    • /
    • pp.521-528
    • /
    • 2015
  • 도로주행 영상에서의 객체 검출에 관한 기존의 연구들은 날씨 및 조명 상태에 따른 객체 검출의 어려움 때문에 대부분 맑은 날씨의 영상을 대상으로 연구가 진행되었다. 본 논문에서는 도로주행 영상의 다양한 날씨 및 조명 상태를 먼저 판단하고, 이를 기반으로 도로 이정표에 대한 색상모델을 설정하여 이정표 객체를 찾는 방법을 제안한다. 제안한 방법은 5종류의 도로 이미지 특징을 이용하여 맑음, 흐림, 비, 야간, 역광으로 날씨 및 조명 상태를 먼저 분류하고, 각각의 상태에서 대상 이정표 색상의 픽셀값의 범위를 추출하여 GMM(Gaussian Mixture Model)을 생성하고 이를 객체 추출에 사용한다. 날씨 및 조명이 다양하게 변하는 도로주행 영상에 제안한 방법을 적용하여 이정표 영역이 안정적으로 찾아지는 것을 확인할 수 있었다.

날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발 (Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change)

  • 이선구;이태윤;이승호
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.340-344
    • /
    • 2023
  • 본 논문에서는 날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발에 관한 연구를 제안한다. 제안하는 기법은 영상장치를 이용한 딥러닝을 사용하여 날씨 변화에 따른 LED 휘도를 자동 조절함으로써 실외 LED 전광판의 시인성을 확보한다. 날씨 변화에 따른 LED 휘도를 자동 조절하기 위하여, 먼저 평면화된 배경 부분 이미지 데이터에 대한 전처리 과정을 거친 후, 합성곱 네트워크를 이용하여 학습시켜 날씨에 대한 분류를 진행할 수 있는 딥러닝 모델을 만들어낸다. 적용된 딥러닝 네트워크는 Residual learning 함수를 사용하여 입력값과 출력값의 차이를 줄임으로써 초기의 입력값의 특징을 가지고 가면서 학습하도록 유도한다. 다음에 날씨를 인식하여 날씨 변화에 따라 실외 LED 전광판의 휘도를 조절하는 제어기를 사용하여 주변 환경이 밝아지면 휘도가 높아지도록 변경하여 선명하게 보이도록 한다. 또한, 주변 환경이 어두워지면 빛의 산란에 의해 시인성이 떨어지기 때문에 전광판의 휘도가 내려가도록 하여 선명하게 보이도록 한다. 본 논문에서 제안하는 방법을 적용하여 LED 전광판의 날씨 변화에 따른 휘도 측정의 공인 측정 실험 결과는, 날씨 변화에 따라 실외 LED 전광판의 시인성이 확보됨을 확인하였다.

DB-Based Feature Matching and RANSAC-Based Multiplane Method for Obstacle Detection System in AR

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권7호
    • /
    • pp.49-55
    • /
    • 2022
  • 본 논문에서는 날씨와 같은 외부 환경요인에도 강건하게 동작할 수 있는 장애물 감지 기법을 제안한다. 특히, DB 기반의 특징 매칭과 RANSAC(RANdom SAample Consensus)기반의 다중 평면 방식을 통해 증강현실(Augmented Reality, AR)에서 정확하게 위험 상황을 알려줄 수 있는 장애물 감지 시스템을 제안한다. RGB카메라로부터 얻은 영상을 기반으로 장애물을 검출하는 접근법은 영상에 의존하기 때문에 조명에 따른 특징 검출이 부정확하고, 조명이나 자연광 또는 날씨의 영향을 받기 때문에 장애물 검출이 어려워진다. 또한, 복잡한 지형에서 생성되는 다수의 평면은 장애물을 감지하는데 있어서 오차가 커지는 원인이 된다. 이 문제를 완화하기 위해 본 논문에서는 DB기반의 특징 매칭을 통해 조명에 관계없이 장애물을 효율적이고 정확하게 감지한다. 또한, 다중 평면을 RANSAC을 통해 단일 평면으로 정규화하여 특징점을 분류하기 위한 기준을 새롭게 계산한다. 결과적으로 제안하는 방법은 조명, 자연광, 날씨에 관계없이 효율적으로 장애물을 감지할 수 있고, 높낮이나 다른 지형에서도 안정적으로 표면을 감지할 수 있기 때문에 사용자의 안전성 확보에 활용할 수 있을 거라 기대한다. 제안하는 방법은 모바일 디바이스에서 실험한 결과가 대부분 안정적으로 실내/외의 장애물들을 인지하였다.

DCT를 이용한 자동차번호판 추출에 관한 연구 (A Study For Vehicle License Plate Extraction Using DCT)

  • 경보현;손태주;전호상;이학찬;남성기;남궁재찬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.318-320
    • /
    • 1999
  • 본 논문에서는 디지털 카메라를 통해 얻어진 자동차 영상으로부터 이산코사인변환(Discrete Cosin Transform : DCT)를 이용한 자동차번호판 추출방법을 제안한다. 번호판은 문자와 배경으로 이루어져 있으며 번호판 내에는 문자들이 조밀하게 모여 있다는 특징과 번호판 영역이 직사각형으로 되어 있다는 것을 이용하여 DCT에 의해서 자동차영상에서 수직, 수평, 대각선 성분만을 추출한후 이 추출된 에지영상에서 코릴레이션(Correlation)을 이용하여 번호판영역을 검출하고 이 검출된 번호판영역을 투영 히스토그램(Histogram)에 의해서 날씨가 흐리거나 아주 밝거나 밤에 찍은 영상들에 대해서는 번호판 추출이 힘들었다. 그러나 제안된 본 논문은 날씨와 납과 밤에 상관없이 일관된 번호판 영상을 추출할 수 있었다.

  • PDF

PCA 기반의 SVM을 이용한 SAR 이미지의 표적 인식에 관한 연구 (A Study on Target Recognition with SAR Image using Support Vector Machine based on Principal Component Analysis)

  • 장하영;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.434-437
    • /
    • 2011
  • 차세대 지능적 무기체계의 자동화를 목표로 SAR(Synthetic Aperture Radar) 영상 신호를 이용한 표적 인식률 향상을 위한 여러가지 방법들이 제안되어 왔다. 기존의 연구들은 SAR 영상의 고차원 특징을 그대로 사용했기 때문에 표적 인식의 성능저하가 있었다. 본 연구에서는 정보 획득 거리가 길고, 날씨에 제약이 없이 전천후 작전 운용이 가능하도록 레이더의 특징과 고해상도 영상을 결합한 SAR 이미지를 이용한 표적 인식률 향상 방법을 제안한다. 효과적인 표적 인식을 하기위해 고차원의 특징벡터를 저차원의 특징벡터로 축소하는 PCA(Principal Component Analysis)를 기반으로 하는 SVM(Support Vector Machine)을 사용한 표적 인식 기법을 사용하였고, PCA 기반의 SVM 분류기를 이용한 표적 인식이 SVM 만을 사용한 표적 인식보다 향상된 성능을 보인 것을 확인하였다.

Landsat ETM+ 자료에 기초한 서울시 구별 연무지수비교

  • 김천;정강호;박승환
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
    • /
    • pp.38-41
    • /
    • 2001
  • 본 연구는 2000년 9월4일 Landsat ETM+ 위성화상자료에 기초하여 산출된 연무지수(haze index)를 서울시 구별로 비교, 분석하였다. 태슬모자형 변환(Tesseled Cap transformation)의 제 4특징인 연무지수를 산출하기 위해 6개의 계수를 새로 구하였다. 시정거리가 21.5km인 비교적 좋은 날씨상태에서 강남구와 서초구의 경우 다른 구에 비해 월등히 연무지수가 높게 나타났다. 그리고 강북지역의 연무지수는 강남지역보다 낮다. 비교적 높은 연무지수를 갖는 강북지역의 구는 용산구, 종로구, 노원구이다.

  • PDF