• Title/Summary/Keyword: 날개 형상설계

Search Result 160, Processing Time 0.024 seconds

Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter (스플리터 형상최적화에 의한 양흡입 원심블로어 성능개선)

  • Lee, Jong Sung;Jang, Choon Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1065-1072
    • /
    • 2014
  • The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.

High-Efficiency Design of a Ventilation Axial-Flow Fan by Using Weighted Average Surrogate Models (가중평균대리모델을 이용한 환기용 축류송풍기의 고효율 최적설계)

  • Kim, Jae-Woo;Kim, Jin-Hyuk;Lee, Chan;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.763-771
    • /
    • 2011
  • An optimization procedure for the design of a ventilation axial-flow fan is presented in this paper. Flow analyses of the preliminary fan are performed by solving three-dimensional Reynolds-averaged Navier-Stokes equations via a finite-volume solver with the shear-stress transport turbulence model as a turbulence closure. Three variables, the hub-to-tip ratio and the stagger angles at the mid and tip spans, are selected for the optimization. The Latin-hypercube sampling method as a design-of-experiments technique is used to generate twenty-five design points within the design space. and the weighted average surrogate models, WTA1, WTA2, and WTA3, are applied for find optimal designs. The results show that the efficiency is considerably enhanced.

Basic Configuration Design and Performance Prediction of an 1 MW Wind Turbine Blade (1 MW 풍력터빈 블레이드 형상기본설계 및 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • In modem wind power system of large capacity above 1MW, horizontal axis wind turbine(HAWT) is a common type. And, the optimum design of wind turbine to guarantee excellent power performance and its reliability in structure and longevity is a key technology in wind Industry. In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) applying to basic 1MW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and we use Viterna-Corrigan formula to interpolate the aerodynamic characteristics in post-stall region. In order to predict the performance characteristics of the blade, a performance analysis carried out by BEMT method. As a results, axial and tangential flow factors, angle of attack, power coefficient investigated in this study.

Analysis of the Aerodynamic Characteristics of Missile Configurations Using a Semi-Empirical Method (Semi-Empirical 기법을 이용한 미사일 형상의 공력특성 해석)

  • Han, Myung-Shin;Myong, Rho-Shin;Cho, Tae-Hwan;Hwang, Jong-Son;Park, Chan-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.26-31
    • /
    • 2005
  • An efficient estimation of the aerodynamic characteristics for missile configurations is essential in the preliminary stage of a missile design. In this study, a Missile DATCOM family code based on the semi-empirical method was utilized for this purpose. In order to check the accuracy and reliability of the code several test cases have been considered: subsonic flow with high angles of attack and supersonic flow with moderate angles of attack. It turned out that the code in general provides prediction in qualitative agreement with the experimental data and results by other works. Finally, the code was applied to a more complicated missile configuration with canard and freely spinning tail fin.

A Study of Residential Blade Airfoil Design of Wind Turbine Generator System (주택용 고효율 풍력발전기 브레이드를 위한 에어포일의 최적설계에 관한 연구)

  • Sun, Minyoung;Choi, Kwangsuk;Cho, Yongki;Lee, Kangil;Shin, Baeksik;Lim, Jaekyu;Kim, Dongyong;Jang, MiHye
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.186.2-186.2
    • /
    • 2010
  • 풍력발전기의 구성요소 중 브레이드는 바람의 운동에너지를 회전력으로 변환하는 핵심요소이며, 효율적인 설계기법이 절실히 요구되는데 선진국에서는 설계기술을 회피하는 실정으로 브레이드 형상 설계기법의 확보는 어려운 실정이다. 본 논문은 날개요소 운동량이론(BEMT) 및 X-foil을 이용하여 10kW급 브레이드 국산화 개발에 목적을 두고 공기역학적 설계를 수행하여 국내 풍황에 적합한 최적의 풍력발전기 에어포일을 개발하는데 목적을 두고 그 방안을 제시한다.

  • PDF

Design and Test of Lateral/Directional Control Law of a Tailless UAV Using Spoilers (스포일러를 이용한 무미익 항공기의 횡방향축 제어기설계 및 시험)

  • Hong, Jin-sung;Hwang, Sun-yu;Lee, Kwang-hyun;Hur, Gi-bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.422-428
    • /
    • 2019
  • A tailless or Blended-Wing-Body(BWB) shaped configuration is highlighted for UCAV with low RCS characteristics. The BWB configuration is characterized by its directional static instability and low controllability. To control the directional movement of the BWB configured vehicle, directional thrust vectoring equipment or drag rudder typed control surfaces which utilize the drag differences of the wing can be considered. This paper deals with a BWB shaped configuration using a spoiler and describes the lateral-directional aerodynamic characteristics of the vehicle. In addition, it is shwon that the lateral-directional motion can be controlled effectively by using the classical PI control structure. This control law is verified by flight test and showed adequate for the tailless BWB shaped UAV.

A Study on the Integration of Analysis Modules and the Optimization Process in the MDO Framework (MDO 프레임워크 개발을 위한 해석 코드 및 최적화 과정 통합에 관한 연구)

  • Cho, Sang-Oh;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.1-10
    • /
    • 2002
  • Multidisciplinary Design Optimization (MDO) is a new design approach, which aims to reduce the design cycle and the development cost, while improving the performance of the product. In order to develop a framework software where the multidisciplinary design is possible, several methods about the analysis codes integration, the analysis and optimization process management, and the software architecture, are proposed in this study. Centralized DataBase Management System (DBMS) is adopted. Both the Dynamic Link Library(DLL) and the File Interface are suggested and implemented as analysis codes integration methods. To efficiently manage the optimization process and the data flow, the Graphic Programming approach is introduced. The proposed integration methods are verified by two test case examples: Simple house design example and the aircraft wing design problem using three dimensional Panel Code.

Shape Design and Specific Torque Characteristics of the Extrusion Twin Screw (압출용 2축 스크류의 형상설계 및 비토크 특성)

  • 최부희;최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.185-193
    • /
    • 2003
  • The modular self-wiping co-rotating twin screw extruder (SWCOR) has become the most important of twin screw machines. Screw design is one of the most important factors in determining performance of screw extruder. The screw flight and screw channel geometry of SWCOR is determined by the screw diameter, centerline distance, helix angle, and flights number. The maximum allowable throughput rate on a twin screw extruder is determined by a combination of free volume and available specific torque. In this paper we designed geometrical parameters of extruder screw and presented optimal specific torque value in K=1.55, and then developed screw design program for the screw cutting by the use of JAVA API in the twin screw extruder.

Aerodynamic Shape Design Method for Wing Planform Using Metamodel (근사모델을 이용한 날개 평면형상 공력형상설계 방법)

  • Bae, Hyogil;Jeong, Sora
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In preliminary design phase, the wing geometry of the civil aircraft was determined using the empirical equation and historical data. To make wing geometry more aerodynamically efficient, an aerodynamic shape optimization was conducted. For this purpose the parametric modeling, high fidelity CFD analysis and metamodel-based optimal design technique were adopted. The parametric modeling got the design process to achieve the improvement by generating the configuration outputs easily for the major design variables. The optimal design equations were formularized as the type of the multi-objective functions considering low/high speed and lift/drag coefficient. The optimal solution was explored with the help of the kriging metamodel and the desirability function, therefore the optimal wing planform was sought to be excellent at both low and high speed region. Additionally the optimal wing planform was validated that it was excellent not only at the specific AOA, but also all over the range of AOA.

박리지연 및 양항비 상승효과를 가진 익형내부 구멍효과 설계 최적화 및 단순화 연구

  • Kim, Yeong-Jin;Choe, In-Jun;Nam, Do-U
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.518-522
    • /
    • 2016
  • 항공기 운항 중 사고가 가장 많이 발생하는 순간이 이착륙 순간이다. 사고의 원인은 실속(Stall)으로 인한 조종성 상실, 버드 스트라이크 등의 이유들이 있다. 본 연구에서는 항공기 날개에 구멍을 내서 구조적인 변화를 통해 이 착륙 시에 가장 많이 적용되는 받음각인 $10^{\circ}$에서 흐름의 박리가 지연되고, 양항비가 상승되는 효과를 기대하고 $10^{\circ}$이외의 받음각에서 박리가 지연되는지 해석을 진행하였다. 본 연구에서의 최종적 목표는 곡선형태의 구조변화 형상과 이를 실제 항공기에 적용이 가능하도록 제작성과 경제성을 고려하여 단순화 하는 작업을 진행하고 곡선 형태와 같은 효과를 얻고자 해석을 진행하였다. 받음각 $10^{\circ}$에서 해석을 진행한 경우 모든 형상들이 흐름의 박리를 지연시키는 효과를 가져왔다.

  • PDF