• Title/Summary/Keyword: 날개 끝

Search Result 112, Processing Time 0.022 seconds

Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model (Reynolds-averaged Navier-Stokes 해석과 기포동역학 모델을 이용한 날개 끝 와류 공동 소음의 수치적 고찰)

  • Ku, Garam;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the Eulerian/Lagrangian one-way coupling method is proposed to predict flow noise due to Blade-Tip Vortex Cavitation (BTVC). The proposed method consists of four sequential steps: flow field simulation using Computational Fluid Dynamics (CFD) techniques, reconstruction of wing-tip vortex using vortex model, generation of BTVC using bubble dynamics model and acoustic wave prediction using the acoustic analogy. Because the CFD prediction of tip vortex structure generally suffers from severe under-prediction of its strength along the steamwise direction due to the intrinsic numerical damping of CFD schemes and excessive turbulence intensity, the wing-tip vortex along the freestream direction is regenerated by using the vortex modeling. Then, the bubble dynamics model based on the Rayleigh-Plesset equation was employed to simulate the generation and variation of BTVC. Finally, the flow noise due to BTVC is predicted by modeling each of spherical bubbles as a monople source whose strength is proportional to the rate of time-variation of bubble volume. The validity of the proposed numerical methods is confirmed by comparing the predicted results with the measured data.

Optimal Rotor Blade Design for Tidal In-stream Energy (조류발전용 로터 블레이드의 최적 형상 설계)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Marine current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop tidal in-stream energy conversion system in coastal area. The objective of study is to investigate harnessing techniques of tidal current energy and to design the a 100 kW horizontal axis tidal turbine using blade element momentum theory with Prandtl's tip loss factor for optimal design procedures. In addition, Influence of Prandtl's tip loss factor at local blade positions as a function of tip speed ratio was studied, and the analysed results showed that power coefficient of designed rotor blade using NACA 63812 was 0.49 at rated tip speed ratio.

The Effect of Spanwise Flow and Wing Rotation on the Aerodynamic Characteristics in Flapping Motion (날개 길이방향 유동과 날개 회전이 날개짓 운동의 공기역학적 특성에 미치는 효과)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Chung, Jin-Taek;Kim, Kwang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.753-760
    • /
    • 2007
  • In a 3-D flapping motion, the spanwise flow is generated while the wing is moved on the stroke plane. And at the end of each stroke, the rotational circulation is generated due to a wing rotation. In this study, to evaluate the effect of spanwise flow and wing rotation on the aerodynamic characteristics in 3-D flap 753ping motion, a 3-D flapping motion was compared with a 2-D translating motion. In each flapping motion, the aerodynamic forces were measured with respect to the angles of attack and Reynolds number. The aerodynamic forces generated by 2-D translating motion were higher than those generated by 3-D flapping motion. While the lift of 3-D flapping motion was increased until the angle of attack $60^{\circ}$ at mid-stroke, the lift generated by 2-D translating motion was decreased above the angle of attack 40° at mid stroke. Also, at the end of each stroke, the aerodynamic forces were increased rapidly due to wing rotation.

Papers : An Experimental Study of the Aerodynamic Characteristics Using the Wing - tip Jet Blowing at the Aircraft (논문 : 날개끝 불어내기 장치가 있는 항공기의 공력특성에 관한 실험연구)

  • Hong, Hyeon-Ui;Jeong, Un-Gap;Kim, Beom-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • The pressure distributions on a semi-span wing 1/12 scale mode and sic component aerodynamic forces and moments on a complete 1/16 scale advanced trainer model were measured. To reduce wing-tip vortex strength, 3 wing-tip jet slot shaped(forward $35{^{\circ}C}$ direction, straigt direction, backward $35{^{\circ}C}$ direction) and 3 blowing coefficents (0.004, 0.009, 0.017) were considered. From experiment results, the case of straight direction and blowing coefficent of 0.017 was the best effective in the reduction of drag and in increase of lift-drag ratio and A rate of drag decrease and a rate of lift-drag ratio increase were of most effective on angle of attack 8 degree.

Analysis of End-Plated Propellers by Panel Method (패널법에 의한 날개끝판부착 프로펠러의 해석)

  • C.S. Lee;I.S. Moon;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.55-63
    • /
    • 1995
  • This paper describes the procedure to analyze the performance of the end-plated propeller(EPP) by a boundary integral method. The screw blade(SB) and end-plate(EP) are represented by a set of quadrilateral panels, where the source and normal dipole of uniform strength are distributed. The perturbation velocity potential, being the only unknown via the potential-based formulation, is determined by satisfying the flow tangency condition on the blade and the end-plate at the same time. The Kutta condition is satisfied through an iterative process by requiring the null pressure jump across the upper and lower sides of the trailing edges of both the SH and the EP. Sample calculations indicate that the EP increases the loading near the tip of the SB while spreading the trailing vortices along the trailing edge of the EP, thus avoiding the strong tip-vortex formation. Predicted performance of the EPP shows good correlations with the experimental results. The method is therefore considered applicable in designing and analyzing the EPP which may be an alternative for energy-saving propulsive devices.

  • PDF

A Study on the Noise Reduction of Axial Flow Fan by Experimental Method (실험적 방법에 의한 축류형 팬의 소음저감에 관한 연구)

  • 김동규;오재응;임동규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.28-35
    • /
    • 1993
  • 팬소음은 설계변수들과 관계가 있으므로 본 논문은 실험적 방버벵 의하여 팬소음과 설계변수의 관계를 고찰하였다. 설계변수는 팬소음에 특히 영향이 큰 날개수, 날개각도, 날개끝 간극을 선택하였으며 새로운 설계변수로서 동익과 정익간의 간극과 흡입구 길이를 고찰하였다. 본 논문은 팬소음에 대한 관련된 이론을 정리하였으며 축류형 팬의 고효율 저소음 설계를 위한 방안을 제시하였다. 흡입구 길이, 날개끝 간극, 동익과 정익간의 간극등의 설계변소를 변경하여 실험한 결과 이들 설계변수들의 조정에 m이하여 축류형 팬의 고효율 저소음화를 이룰 수 있었다.

  • PDF

무부자 쌍끌이 중층망의 전개성능에 관한 모형실험 2. 추(Front weight)와 날개끝 추(Wing-eng weight)의 무게에 따른 전개성능

  • 권병국;유제범;이주희;김정문
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.67-68
    • /
    • 2001
  • 무부자 쌍끌이 중층망은 유속에 관계없이 뜸줄이 거의 일직선으로 유지되고 뜸줄의 깊이 변화가 없으므로 부력은 작용하지 않지만 아래 끌줄의 길이를 조절함으로써 망고를 유지할 수 있다. 또한, 무부자 쌍끌이 중층망은 발줄의 침자 외에도 추(Front weight)와 날개끝 추(Wing-end weght)의 무게를 증가시키면, 아래쪽으로의 침강력이 작용하여 망고를 더 크게 할 수 있어 기존어구보다 전개성능을 더욱 향상시킬 수 있다. (중략)

  • PDF

A Study on the Propeller Blade Singing Place of an 86,000 Ton Deadweight Crude Oil Tanker (86,000톤 원유운반선 프로펠러 날개의 singing(명음) 발생위치 조사)

  • Dong-Hae Kim;Kyoon-Yang Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.59-64
    • /
    • 1994
  • A study was conducted to investigate the propeller singing place of an 86, 000 ton Deadweight Crude Oil Tanker. In preliminary study, proper use of finite element analysis was verified by comparing with the result of hammering test in the air. Then the finite element analysis was carried out for the blade in the water and compared with the noise measurement during sea trial, which enabled to confirm the local resonances of blade structure. Result of the study showed that the singing occurred most probably at trailing edges on the blade tip over 95% of propeller diameter. Owing to edge cutting of a successfoul remdial action, the singing excitation forces seemed to be reduced whereas the vibration characteristics of the blade was not changed.

  • PDF

Aerodynamic Analysis of Various Winglets (윙렛 형상에 따른 공력 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2008
  • Aircraft fuel efficiency is one of main concerns to aircraft manufacturers and to aviation companies because jet fuel price has tripled in last ten years. One of simple and effective methods to increase fuel efficiency is to reduce aircraft induced drag by using of wingtip devices. Induced drag is closely related to the circulation distribution, which produces strong wingtip vortex behind the tip of a finite wing. Wingtip devices including winglets can be successfully applied to reduce induced drag by wingtip vortex mitigation. Winglet design, however, is very complicated process and has to consider many parameters including installation position, height, taper ratio, sweepback, airfoil, toe-out angle and cant angle of winglets. In current research, different shapes of winglets are compared in the view of vortex mitigation. Appropriately designed winglets are proved to mitigate wingtip vortex and to increase lift to drag ratio. Also, the results show that winglets are more efficient than wingtip extension. That is the reason B-747-400 and B-737-800 chose winglets instead of a span increase to increase payload and range. Drag polar comparison chart is presented to show that minimum drag is increased by viscous drag of winglet, but at high lift, total drag is reduced by induced drag decrease. So, winglets are more efficient for aircraft that cruises at a high lift condition, which generates very strong wingtip vortex.

  • PDF

Numerical analysis of cavitation behavior and noise using Eulerian-Lagrangian method (Eulerian-Lagrangian 기법을 이용한 캐비테이션 거동과 소음의 수치적 해석)

  • Seol Hanshin;Park Kwangkun;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.167-170
    • /
    • 2004
  • 본 논문에서는 수중익 버블 캐비테이션과 날개 끝 볼텍스 캐비테이션의 거동 및 소음을 Eulerian-Lagrangian 기법을 이용하여 수치적으로 해석하였다. Eulerian-Lagrangian 기법은 캐비테이션 버블이 유동장에 미치는 영향이 거의 없다는 가정하에 유동장과 캐비테이션 거동을 일방으로 연계하여 해석하는 방식이다. 수중익 버블 캐비테이션 해석을 위한 유동장은 비압축성 RAMS 방정식을 해석하여 구하고 날개 끝 볼텍스 캐비테이션 유동장은 일반적 CFD 기법의 큰 수치 소산으로 그 특성이 잘 나타나지 않으므로 Sculley 볼텍스 모델을 이용하여 해석한다. 해석한 유동장 정보를 입력치로 하고 버블의 지배 방정식인 Rayleigh-Plesset 방정식과 Newton의 제2법칙에 근거한 궤적 방정식을 연계하여 캐비테이션의 성장-붕괴와 운동을 예측한다. 계산된 거동 정보를 이용하여 버블 캐비테이션과 날개 끝 볼텍스 캐비테이션의 소음을 예측하였다. 본 연구는 수중 운동체에서 발생하는 캐비테이션의 거동과 소음의 특성을 파악하고 그에 따른 대비책을 마련하는 기본 연구로서 활용할 수 있을 것이다.

  • PDF