• Title/Summary/Keyword: 날개형상

Search Result 318, Processing Time 0.026 seconds

A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft (항공기 공력특성 예측을 위한 Navier-Stokes 방정식 기반의 정적 유체-구조 연계 해석 시스템)

  • Jung, Sun-Ki;Anh Duong, Hoang;Lee, Young-Min;Lee, Jin-Hee;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.532-540
    • /
    • 2008
  • Recently there are growing interests in calculating aerodynamic characteristics of aircraft configurations with structural deformation using the FSI(Fluid-Structure Interaction) system in which CFD(Computational Fluid Dynamics) and CSD(Computational Structure Dynamics) modules are coupled. In this paper the FSI system comprised of CAD, CFD, CSD, VSI(Volume Spline Interpolation) and grid deformation modules was constructed in order to investigate aerodynamic characteristics of the deformed shape. In the process VSI and grid generation modules are developed to combine CSD and CFD routines and to regenerate the aerodynamic grids for the deformed shape, respectively. For the CFD and CSD analysis, commercial programs FLUENT and NASTRAN were used. As a test model, DLR-F4 wing configuration was chosen and its aerodynamic characteristics were calculated by applying the static FSI system. It was shown that lift and drag coefficients of the wing at mach number 0.75 are reduced to 20.26% and 18.5%, respectively, owing to the structural deformation.

Evaluation of Reinforcement Effects According to Reinforcement Type and Grouting Method (지반보강재의 형상과 그라우팅 방법에 따른 보강효과 평가)

  • Park, Jongseo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.13-20
    • /
    • 2019
  • In order to ground reinforcement, the chemical grouting, the anchor, the soil nailing system, the micropile, etc. can be mentioned by the methods widely used in domestic. The above ground reinforcement methods are developed by various methods depending on the type of reinforcement, installation method, presence of prestress, grouting method, etc. However, in common, the strength of reinforcement, the friction force of grout and reinforcement and the friction force of grout and ground are the main design variables. Therefore, the optimized ground reinforcement is a material with a high tensile strength of the reinforcement itself, the friction force between the reinforcement and the grout is high, and the application of an optimal grouting method is necessary to improve the friction force between the grout and the ground. In this study, a total of 20 model tests were conducted to analyze the reinforcement effects according to the shape of the reinforcement and the grouting method. As a result of the test, As a result of the experiment, it is judged that the reinforcing effect is superior to the perforated + wing type reinforcement and post grouting method.

Aerodynamic Features of Maple Seeds in the Autorotative Flight (자동회전 비행을 하는 단풍나무 씨앗의 항공역학적 특성)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.843-852
    • /
    • 2016
  • The autorotative flight of maple seeds(Acer palmatum) is numerically simulated based on the 3D geometry and the motion parameters of real seeds. The nominal values of the motion parameters are 1.26 m/s for descent velocity, 133.6 rad/s (1,276 rpm) for spinning rate, $19.4^{\circ}$ for coning angle, and $-1.5^{\circ}$ for pitch angle. A compact leading-edge vortex (LEV) positioned at the inner span of the seed blade causes a large suction pressure on its leeward surface. The suction pressure peaks occur near the leading region of inner span sections. The flow pattern characterized by the prominent LEV and the values of aerodynamic force coefficients obtained in the present study are in good agreement with experimental data measured for a dynamically-scaled robot maple seeds. A spiraling vortex developed in the leeward region advances toward the seed tip and merges with the tip-passing flow, which is considered to be a mechanism of maintaining stable and attached LEV for the autorotating maple seeds.

Robust Design Optimization of a Fighter Wing Using an Uncertainty Model Constructed by Neural Network (신경망으로 구축된 불확실성 모델을 이용한 전투기 날개의 강건 최적 설계)

  • Kim, Ju-Hyun;Kim, Byung-Kon;Jun, Sang-Ook;Jeon, Yong-Hee;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • This study performed robust design optimization of fighter wing planform, considering uncertainty based on neural network model. To construct uncertainty model, aerodynamic performance and their sensitivity were evaluated by 3-dimensional Euler equations and adjoint variable method at experimental points selected from central composite design. In addition, because a neural network model has the advantage of capturing non-linear characteristic, it was possible to predict sensitivity of the aerodynamic performance efficiently and accurately . From the results of robust design optimization, it could be confirmed that the robustness of the objective function and constraints were improved if the variation of uncertainty and sigma level were increased.

The Analysis on Audible Noise Level and Cooling Performance for the Low Noise Cooling Fan of Power Transformers (전력용 변압기 저소음 냉각팬의 소음레벨 및 냉각성능 분석)

  • Koo, Kyo-Sun;Kweon, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.110-115
    • /
    • 2009
  • Recently, there has been a growing global interest in environmental conservation, and the field of electric power equipment has been working to become more environment-friendly. Accordingly, the low noise cooling fan of power transformers was developed through the improvement of blade shape. These are expected to apply to existing power transformers and low noise transformers. It is essential for low noise fan to possess good cooling performance as well as low audible noises. But, there was not analysis on the audible noise level and the cooling performance for low noise cooling fans until present. In this paper, we measure the audible noise level and the flow rate of low noise cooling fans to inspect the performance, Also, we confirmed that the low noise cooling fan is available to apply to power transformers through temperature rise tests of power transformers.

A Study on Stress Recovery Analysis of Dimensionally Reducible Composite Beam Structure with High Aspect Ratio using VABS (VABS를 이용한 높은 세장비를 가진 복합재료 보 구조의 차원축소 및 응력복원 해석기법에 대한 연구)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.405-411
    • /
    • 2016
  • This paper presented the theory related to a two dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite beam with initial twist and high aspect ratio. Using VABS including related theory, preceding research data of the composite wing structure has been modeled and compared. Cross-sectional analysis was performed and 1-D beam was modeled at cutting point including all the details of real geometry and material. The 3-D strain distribution and margin of safety at recovery point was calculated based on the global behavior of the 1-D beam analysis and visualize numerical results.

Effects of Impeller Shape of Submersible Nonclogging Pump on its Performance (비 막힘형 수중 펌프 임펠러 형상이 펌프 성능에 미치는 영향)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1201-1207
    • /
    • 2012
  • This study was performed to develop a high-efficiency submersible nonclogging pump impeller. Toward this end, we simulated the effect of some parameters such as the outlet position of a blade ($h_I$), outlet width of a blade ($b_2$), and hub profile on the pump efficiency by using the commercial codes ANSYS CFX and BladeGen. The results showed that the pump efficiency was proportional up to $h_I$= 38 mm and $b_2$= 55 mm. It remained constant over these values. However, the head and shaft power were proportional to $h_I$ and $b_2$ in the simulated ranges. The effects of hub profile changes on the pump efficiency were relatively small compared to those of the other parameters.

An Exploratory Study on the Speed Limit of Compound Gyroplane(2) : Speed and Wing Sizing (복합 자이로플레인의 한계 속도에 대한 탐색연구(2) : 속도 및 날개 사이징)

  • Shin, Byung-Joon;Kim, HakYoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.978-983
    • /
    • 2015
  • A study on the speed limit and sizing of auxiliary fixed-wing of compound gyroplane was performed. The performance of the plane that uses the same rotor system and power of BO-105 helicopter was compared with that of BO-105 helicopter. The wing area which is used to compensate in lift, was calculated considering the aerodynamic characteristics and lift sharing ratio of the rotor. Achievable flight speeds were observed for two types of fuselage; BO-105 and streamlined bodies. The study showed that the autorotating rotor can share 1/2 of lift at high speed and the parasite power of compound gyroplane having streamlined body and small wing can be minimized, accordingly it can fly faster than helicopter with airspeed more than twice.

Effects of Impellers and Floating Ring Seals on Performance of Centrifugal Pumps (임펠러 및 플로팅 링 실이 원심 펌프의 성능에 미치는 영향)

  • Kim, Dae-Jin;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1083-1088
    • /
    • 2011
  • The effects of an impeller and floating ring seals on the performance of centrifugal pumps are investigated on the basis of their test results using water. The pumps are single-staged centrifugal pumps developed for 30-ton- and 75-ton-class liquid rocket engines, and are components of a turbopump that supplies propellants (liquid oxidizer and kerosene) to the combustion chamber. The exit width of the impellers and the numbers and exit angles of the impeller blades are found to have influences on the pump heads. In addition, the pumps have different efficiencies according to the gaps between the floating ring seals and the impellers, whereas the pump size seems to have less effect on the efficiency.

Structure Design and Experimental Appraisal of the Drag Force Type Vertical Axis Wind Turbine (수직축 항력식 풍력터빈의 구조설계 및 실험평가)

  • Kim Dong-Keon;Keum Jong-Yoon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.278-286
    • /
    • 2006
  • Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades$(\alpha)$ and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, $\alpha=60^{\circ}$ and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of $\Omega=0.33$, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed.