본 논문에서는 산업 기사 시험을 대비하는 학생들을 위한 웹 기반 학습 시스템을 설계함에 있어 기사 시험에 맞는 새로운 문제 출제 방식을 제시하고, 학습 결과에 따라 각 문제에 대한 새로운 자동 난이도 조정 방법을 제시한다. 이를 위해 문제 출제에 있어 단원과 난이도에 따라 골고루 문제를 출제할 수 있는 알고리즘을 제시하고, 각 문제의 난이도를 조정함에 있어 학습자 개인 또는 단체의 학습 능력을 고려한 새로운 자동 난이도 조정 방법을 제시한다. 또한 제시된 시스템은 학습자가 기사 시험을 준비함에 있어 스스로 학습, 평가할 수 있으며, 평가 결과를 즉시 확인하고 재학습을 할 수 있다.
LMS 기반의 온라인 평가를 위해 출제되는 문제들은 교수자가 직접 출제하거나 또는 카테고리별로 나뉘어진 문제은행에서 난이도에 따른 자동 출제 방식을 주로 이용한다. 이중에서 난이도에 따른 자동출제 방식은 평가자들에게 출제되는 문제가 서로 다를수 있기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도를 관리하는 것이 중요하다. 본 논문에서는 문제의 정답률뿐만 아니라 해당 문제를 해결하는데 사용된 소요시간을 같이 고려한 난이도 재조정 알고리즘을 제시한다. 이를 위해 머신러닝의 로지스틱 회귀 분류 알고리즘을 이용하였으며, 학습모델의 예측 확률값을 기반으로 기준 임계값을 설정하여 각 문항별 난이도 재조정에 활용하였다. 그 결과 정답률에만 의존한 문항별 난이도에 많은 변화가 일어남을 확인할 수 있었다. 또한 조정된 난이도의 문제를 이용하여 그룹별 평가를 수행한 결과, 정답률 기반의 난이도 문제에 비해서 대부분의 그룹에서 평균 점수가 향상됨을 확인할 수 있었다.
비트코인은 탈중앙화와 분산원장을 특징으로 하는 암호화폐로서 "작업증명"이라는 채굴시스템을 통해 유지된다. 채굴 시스템에서는 블록 생성시간을 일정하게 유지하기 위해 채굴 난이도를 조정하게 되는데, 기존의 채굴 난이도 변경 방식은 미래의 해시파워를 반영할 수 없다는 문제가 있다. 따라서 실제시간과 예정시간 사이에 발생하는 오차로 인해 블록생성과 실세계 시간의 불일치를 가중시키게 되고, 결국 거래 기한을 맞추지 못하거나 코인 호핑 공격에 취약점을 노출시키게 된다. 블록 생성시간을 일정하게 유지시키기 위한 기존 연구도 여전히 오차 문제를 갖는다. 본 연구에서는 이러한 오차를 줄이기 위한 기계학습 기반 채굴 난이도 예측 방안을 제시한다. 이전 해시파워를 학습하여 미래의 해시파워를 예측하고 예측한 값을 이용하여 채굴 난이도를 조정한다. 우리의 실험 결과는 이와 같은 경우 기존 채굴 난이도 조정방식보다 오차율을 약 36% 더 줄일 수 있음을 보여준다.
사전 학습된 언어 모델은 최근 다양한 도메인 및 응용태스크에 활용되고 있다. 하지만 언어 모델을 활용한 문장 난이도 측정 태스크에 대해서는 연구가 수행된 바 없다. 이에 본 논문에서는 교과서 데이터를 활용해 문장 난이도 데이터 셋을 구축하고, 일반 말뭉치로 훈련된 BERT 모델과 교과서 텍스트를 활용해 적응 학습한 BERT 모델을 문장 난이도 측정 태스크에 대해 미세 조정하여 성능을 비교했다.
최근 언어모델을 활용하기 위한 연구가 활발히 이루어지며, 큰 규모의 언어모델이 다양한 과제에서 혁신적인 성과를 달성하고 있다. 하지만 실제 현장은 거대 언어모델 활용에 필요한 자원과 비용이 한정적이라는 한계를 접하면서, 최근에는 주어진 자원 내에서 모델을 효과적으로 활용할 수 있는 방법에 주목하고 있다. 대표적으로 학습 데이터를 난이도에 따라 구분한 뒤 순차적으로 학습하는 방법론인 커리큘럼 러닝이 주목받고 있지만, 난이도를 측정하는 방법이 복잡하거나 범용적이지 않다는 한계를 지닌다. 따라서, 본 연구에서는 신뢰할 수 있는 사전 정보를 통해 데이터의 학습 난이도를 측정하고, 이를 다양한 과제에 쉽게 활용할 수 있는 데이터 이질성 기반 커리큘럼 러닝 방법론을 제안한다. 제안방법론의 성능 평가를 위해 국가 R&D 과제 전문 문서 중 정보통신 분야 전문 문서 5,000건, 보건의료전문 문서 데이터 4,917건을 적용하여 실험을 수행한 결과, 제안 방법론이 LoRA 미세조정과 전체 미세조정 모두에서 전통적인 미세조정에 비해 분류 정확도 측면에서 우수한 성능을 나타냄을 확인했다.
이러닝 문제은행 기반의 출제 시스템에서 평가를 위해 출제되는 문제들은 주로 난이도에 따른 자동 출제 방식을 이용하고 있다. 이러한 방식은 출제 시점의 문제 난이도가 문제 출제에 핵심이기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도에 대한 지속적인 관리가 필요하다. 본 논문에서는 웹 기반의 학습 시스템에서 보다 효율적인 문제 출제를 위해, 평가 결과를 바탕으로 해당 문제들의 난이도를 동적으로 재조정하는 보다 향상된 알고리즘을 제시한다. 제시된 알고리즘을 구축된 웹기반 학습 시스템에서 기존 알고리즘과 비교 분석해 본 결과 보다 효율적임을 확인할 수 있었다.
이러닝 문제은행 기반의 출제 시스템에서 평가를 위해 출제되는 문제들은 주로 난이도에 따른 자동 출제 방식을 이용하고 있다. 이러한 방식은 출제 시점의 문제 난이도가 문제 출제에 핵심이기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도에 대한 지속적인 관리가 필요하다. 본 논문에서는 웹 기반의 학습 시스템에서 보다 효율적인 문제 출제를 위해, 평가 결과를 바탕으로 해당 문제들의 난이도를 동적으로 재조정하는 보다 향상된 알고리즘을 제시한다. 제시된 알고리즘을 구축된 웹기반 학습 시스템에서 기존 알고리즘과 비교 분석해 본 결과 보다 효율적임을 확인할 수 있었다.
웹 기반의 원격 교육에서 평가를 위해 출제되는 문제들은 주로 고정 출제나 무작위 출제 방식 또는 난이도에 따른 자동 출제 방식을 이용하고 있다. 이중에서 난이도에 따른 자동 출제 방식은 해당 문제의 초기 난이도 부여에 대한 객관성과 주어진 난이도를 이용한 보다 효율적인 문제의 출제 그리고 출제된 문제들에 대한 학습자들의 평가 결과로서 해당 문제들의 난이도를 재조정하는 것이 문제의 핵심이라 할 수 있다. 본 논문에서는 웹 기반의 학습 시스템에서 평가를 위한 자동 출제 방식을 이용함에 있어서 첫째, 난이도뿐만 아니라 학습 범위를 함께 고려한 새로운 난이도별-영역별 문제 출제 알고리즘을 제시하고 둘째, 평가 결과를 바탕으로 해당 문제들의 난이도를 다시 조정하는데 있어서는 학습자들의 학습 능력을 고려한 새로운 난이도 재조정 알고리즘을 제시한다. 제시된 알고리즘을 구축된 웹기반 학습 시스템에서 기존 알고리즘과 비교 분석해 본 결과 보다 효율적임을 확인할 수 있었다.
본 논문에서는 객관식 문항을 난이도에 따라 자동으로 생성하는 방법을 고안하여, 학습자 수준에 적합하도록 다양하고 동적인 형태로 문항 제시를 할 수 있는 시스템을 제안하였다. 이를 위해서는 주어진 문장에서 형태소 분석을 통해 키워드를 추출하고, 각 키워드에 대하여 워드넷의 계층적 특성에 따라 의미가 유사한 후보 단어를 제시한다. 의미 유사 후보 단어를 제시할 때, 워드넷에서의 어휘간 유사도 측정 방법을 사용함으로써 생성된 문항의 난이도를 사용자가 원하는 수준으로 조정할 수 있도록 하였다. 단어의 의미 유사도는 동의어를 의미하는 수준 0에서 거의 유사도를 찾을 수 없는 수준 9 까지 다양하게 제시할 수 있으며, 이를 조절함으로써 문항의 전체 난이도를 조절할 수 있다. 후보 어휘들의 의미 유사도 측정을 위해서, 본 논문에서는 두 가지 방법을 사용하여 구현하였다. 첫째는 단순히 두 어휘의 워드넷 상에서의 거리만을 고려한 것이고 둘째는 두 어휘가 워드넷에서 차지하는 비중까지 추가적으로 고려한 것이다. 이러한 방법을 통하여 실제 출제자가 기존에 출제된 문제를 토대로 보다 다양한 내용과 난이도를 가진 문제 또는 문항을 보다 쉽게 출제하게 함으로써 출제에 소요되는 비용을 줄일 수 있었다.
한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
/
pp.113-122
/
1998
1999년 대학입학 수학능력고사(이하 수능)부터 새롭게 선택과목제와 표준점수제가 도입된다. 선택과목제는 수리탐구II 영역에서 공통과목외 한 개의 과목을 수험생 개인이 선택해서 보는 것을 의미하고, 표준점수제는 영역별 난이도를 조정하기 위해 각 영역의 원점수를 평균 50, 표준편차 10인 점수로 표준화시키는 것을 뜻한다. 선택과목이 있는 영역의 경우는 난이도차뿐만 아니라 각 선택과목 집단별로 일반적인 학업능력의 차이가 존재할 수 있다. 따라서 점수를 표준화시킬 때 과목별 난이도뿐만 아니라 그룹별 학업능력의 차이도 고려해야 한다. 지금까지 발표된 등화방법은 대표적으로 모수적 방법인 선형등화와 비모수적 방법인 백분위수등화가 있는데 이 두 가지 방법은 모두 각 그룹의 학업능력이 동일하다는 가정 하에 전개되어왔다. 따라서 본 논문에서는 우리 나라 입시상황에 적절한 그룹별 능력차이를 보정한 선형등화와 분위수 등화 방법을 비교해 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.