• Title/Summary/Keyword: 난류풍속

Search Result 108, Processing Time 0.024 seconds

A study on an oblique impinging jet (경사충돌분류에 관한 연구)

  • 조용철;김광용;박상규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.716-724
    • /
    • 1990
  • Oblique impinging plane jets were investigated experimentally and numerically at Reynolds number 21000. The inclination angle was varied from 90.deg.(normal to the impinging plate) to 60.deg.. The distance H between the nozzle exit and the stagnation point on the impinging plate was fixed at H/D=8. The working fluid was air. The mean velocity components and turbulent quantities were measured by a hot-wire anemometer. And the static pressure distributions on the impinging plate were measured by a Pitot tube. In numerical computation, the governing partial differential equations of elliptic type were solved with conventional k-.epsilon. turbulence model. The measurements show that, after impingement, the jet half width alone the wall increases in both directions, and that similarity for each turbulent quantity such as Reynolds shear stress or turbulent kinetic energy is revealed in the wall jet region. The computed results show some deviation from experimental data in the impingement region, where streamline curvature is significant. However, the computed results agree qualitatively well with measurements.

Study on centerline turbulent structures of circular contraction and expansion ducts (수축부와 확대부의 중심 유동에서 나타나는 대칭적 난류구조에 관한 연구)

  • Han,Yong-Un;Lee, Jang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.221-228
    • /
    • 1998
  • In order to look into the comparative flow characteristics between a circular contraction duct and a circular expansion duct the both centerline turbulent structures have been investigated by the hot wire anemometry. Both of the contraction and the expansion have Morel type contours. Means, turbulences, and triple moments have been measured for the turbulent kinetic energy budgets along their centerlines. It is resulted that mean velocities of both have much deviated from theoretical values calculated by one-dimensional continuity considerations, and that for the same upstream condition, the expansion maintains the isotropy in general while the contraction maintains a severe anisotropy through the whole duct. The mean transport of the TKE along the expansion is willing to balance mostly with the dissipation in the TKE budgets while that along the contraction is balanced with the production in the turbulent kinetic energy equation.

장대교 내풍설계를 위한 풍동실험

  • 윤태양
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.12-23
    • /
    • 1993
  • 본 고에서는 현재 설계 완료 상태에 있는 서대해대교 사장교의 내풍설계를 위한 풍동실험을 중심으로 풍동실험의 계획단계에서부터 제작방법, 교량가설 지점에서의 기류형태에 대한 MODELING 방법, 풍동실험의 전반적 방법, 난류상태에서의 실험결과 등을 소개하였다. Computer로부터 계산된 고유진동수를 비교한 결과, 그 값이 잘 일치함으로써 모형제작이 우수한 것으로 판단되었다. 교량 자체의 안정성은 100년 빈도 풍속을 기준으로 안전율이 약 2.4를 유지함으로써 매우 안정한 것으로 입증되었고, Vortex Shedding 진동현상도 보이지 않음으로써 교형단면 형상은 적절히 선정되었음이 밝혀졌다. 따라서, 본 실험에서 사용된 방법 및 경험은 향후 건설될 장대교에 대한 내풍설계용 풍동실험에 많은 도움이 될 것으로 사료된다.

  • PDF

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model (NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

An Analysis on Characteristics of Turbulence Energy Dissipation Rate from Comparison of Wind Profiler and Rawinsonde (연직바람관측장비와 레윈존데의 비교를 통한 난류 에너지 감소률의 특성 분석)

  • Kang, Woo Kyeong;Moon, Yun Seob;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.448-464
    • /
    • 2016
  • The purpose of this study is to optimize the parameters related to consensus coherency within the PCL 1300, the operating program of wind profiler, from a validation of wind data between rawinsonde and wind profiler at Chupungryeong ($36^{\circ}13^{\prime}$, $127^{\circ}59^{\prime}$) site in Korea. It is then to analyze the diurnal and seasonal characteristics of the turbulence energy dissipation rate (${\varepsilon}$) in clear and rainy days from March 2009 to February 2010. In comparison of the wind data between wind profiler and rawinsonde during April 22-23, 2010, it was shown in a big error more than $10ms^{-1}$ over the height of 3,000 meters in the zonal (u) and meridional (v) wind components. When removing more than $10ms^{-1}$ in each wind speed difference of u an v components between the two instruments, the correlation coefficients of these wind components were 0.92 and 0.88, respectively, and the root mean square errors were 3.07 and $1.06ms^{-1}$. Based on these results, when the data processing time and the minimum available data within the PCL 1300 program were adjusted as 30 minutes and 60%, respectively, the bias errors were small. In addition, as a result of an analysis of sensitivity to consensus coherency of u and v components within the PCL1300 program, u components were underestimated in radial coherency, instantaneous and winbarbs coherency, whereas v components were overestimated. Finally by optimizing parameters of the PCL1300 program, the diurnal and seasonal means of ${\varepsilon}$ at each height were higher in rainy days than those in clear days because of increasing in the vertical wind speed due to upward and downward motions. The mean ${\varepsilon}$ for clear and rainy days in winter was lower than those of other seasons, due to stronger horizontal wind speed in winter than those in other seasons. Consequently, when the turbulence energy dissipation rates in the vertical wind speed of more than ${\pm}10cm\;s^{-1}$ were excluded for clear and rainy days, the mean ${\varepsilon}$ in rainy days was 6-7 times higher than that in clear days, but when considering them, it was 4-5 times higher.

Characteristic for Long-term Trends of Temperature in the Korean Waters (한국 연근해 수온의 시공간적 장기변동 특성)

  • Seong, Ki-Tack;Hwang, Jae-Dong;Han, In-Seong;Go, Woo-Jin;Suh, Young-Sang;Lee, Jae-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.353-360
    • /
    • 2010
  • The result of analysis of the observed temperature data by the Serial Oceanography Investigation of National Fisheries Research and Development Institute (NFRDI) during last 41 years from 1969 to 2008 showed that sea surface temperatures in the East, West and South Sea of Korea were clearly increased. In case of 100m depth, temperature was increased in the South Sea of Korea, but it was decreased in the East Sea. Especially, the temperature around the coastal area in the East Sea was significantly decreased by the spatial distribution of long-term change of temperature on 100m depth. It should lead to the decreasing trend in the long-term change of temperature on 100 m depth in the entire East Sea. The increasing trend was clearly larger in wintertime than in summertime by a factor of about 2 It means that the long-term increasing trend of sea surface temperature in the Korean Waters is usually caused by the distinctive increasing trend in wintertime. As the results of the analysis of air temperature and wind speed on the 6stations around the coastal area in the Korean Waters, air temperature was found to be continuously increased, but wind speed to be gradually decreased in winter. The weakness of vertical mixing by decreasing of wind speed caused to make the surface mixed layer shallow. it could be considered that the increasing trend of surface temperature was caused by weak mixing between surface and intermediate layers.

Reynolds Number Effects on the Near-Wake of an Oscillating Airfoil, Part 2: Turbulent Intensity (진동하는 NACA 4412 에어포일 근접후류에서의 레이놀즈수 효과 2: 난류강도)

  • Jang,Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.8-18
    • /
    • 2003
  • An experimental study is carried out to investigate the Reynolds number effects on the near-wake of an airfoil oscillating in pitch. An NACA 4412 airfoil is sinusoidally pitched about the quarter chord point between the angle of attack -6$^{\circ}$ and +6$^{\circ}$. A hot-wire anemometer is used to measure the turbulent intensity in the near-wake region of an NACA 4412 airfoil. The freestream velocities of present work are 3.4, 12.4, 26.2 m/s, and the corresponding Reynolds numbers are $5.3{\times}10^4,\;1.9{\times}10^5,\;4.1{\times}10^5$ and the reduced frequency is 0.1. Axial turbulent intensity profiles are presented to show the Reynolds number effects on the near-wake region behind an airfoil oscillating in pitch. All the cases in these measurements show that the turbulent intensities by the change of the Reynolds number are very large at the lowest Reynolds number $R_N=5.3{\times}10^4$; and are small at the other Reynolds number $(R_N=1.9{\times}10^5\;and\;4.1{\times}10^5)$ in the near-wake region. The significant difference of turbulent intensity between $R_N=5.3{\times}10^4,\;and\;1.9{\times}l0^5$ is observed. A critical value of the Reynolds number in the near-wake of an oscillating NACA 4412 airfoil which indicates laminar separation, no separation or turbulent separation exists in the range between $R_N=5.3{\times}10^4\;and\;1.9{\times}10^5$.

Development of New Model(Dome Type) Cold Storage Facility Using 3-D CFD Simulation (3차원 CFD 시뮬레이션을 이용한 신모델(돔형) 저온저장고 개발)

  • 양길모;고학균;홍지향
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.182-187
    • /
    • 2002
  • 국내 저온저장고의 주류를 이루고 있는 컨테이너 박스형 저온저장고의 문제점은 재래식 제어방식으로 인한 성능저하 외에도 자체 구조적인 설계상의 문제점을 가지고 있다 이러한 구조적인 문제점을 열거하면 다음과 같다. 첫째, 한 축 방향에 설치되어있는 유니트 쿨러에서 토출되는 냉기에 의해 저장고 내의 공기를 냉각하는 형태이기 때문에 냉기의 분포가 고르지 못하여 균일한 온도 분포를 이루기 어렵다는 단점을 가지고있다. 둘째, 한 축 방향에서 토출되는 냉기가 맞은 편 벽면까지 도달해야 하기 때문에 풍속이 강해야 하며 이로 인해 저장 청과물이 냉해를 쉽게 입고 심한 증산작용에 의해 쉽게 표면건조나 중량감소를 가져온다. 셋째, 천장부와 측벽부가 90$^{\circ}$의 경사각을 가지고 있어 공기의 유동이 원활하지 못하여 에디현상으로 인한 온도나 풍속의 불균일 구간을 피해서 청과물을 저장해야 하기 때문에 그만큼 버려지는 공간이 많아 비경제적이다. 넷째, 위와 같은 문제점들 때문에 중ㆍ대형의 저온저장고를 컨테이너 박스형으로 설비 할 경우 보다 심한 온도 불균일과 냉기유동 분포를 보여 경제적인 손실이 더 커지게 되는 악순환을 낳게된다. 이에 따라 본 연구에서는 국내 저온저장고의 구조적인 설계상의 문제점을 인식하고 이를 해결하고자 3차원 CFD 시뮬레이션을 이용하여 저온저장고의 새로운 모델을 설계하였다. 이론 바탕으로 직접 저온저장고의 시작기를 개발하여 저장고 내부의 역 유동과 난류유통을 해석하였다. (중략)

  • PDF

Design of Blade system for west-south area in Korea (서남지역 풍황자원에 적합한 블레이드 설계)

  • Cheang, Eui-Heang;Moon, Chae-Joo;Kwak, Seung-Hun;Jung, Moon-Sun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.400-403
    • /
    • 2009
  • Current wind turbine units that are used primarily 3Blade type devices or large-scale wind-term capacity of 2MW of 60m~90m Blade diameter is applied. This is not the best suitable design with the designing condition for the special quality of wind condition in the South-West Coastal Areas of Korea where the wind speed frequency of average wind speed and over 10m/s high wind velocity is fairly low. For this matter, in this dissertation, the expecting generation amount of electric power is measured excluding a mechanical moment, considering wind power energy traveling to the Blade when 60m~120m blade is applied, based on 2MW wind generator. Also, we would like to propose the Blade diameter which is fitted by wind condition of South-West Coastal Areas of Korea.

  • PDF

Variations of Turbulent Fluxes in the Atmospheric Surface Layer According to the Presence of Cloud (구름 유무에 따른 대기표층 난류속의 변화)

  • de Oliveira Junior, Jose Francisco;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • To study the effect of cloud on the variabilities of turbulent fluxes over the flat terrain, we used the gradient method to analyze the dynamic and thermodynamic data from the meteorological 9-m mast (0.75, 3 and 9 m) in Villafria airport in Spain. The decrease of the surface wind speed is governed by cooling at the surface following the evening transition. The sensible heat flux and the momentum flux are increased with the dynamic factor rather than the thermodynamic factor, and the sensible heat flux was not affected by the thermal condition. The global radiation did not play an important role in the variation of the sensible heat flux in the cloudy day, but the atmospheric surface layer was characterized rather by the wind intensity.