• Title/Summary/Keyword: 난류유동 수치모형

Search Result 88, Processing Time 0.025 seconds

Multiphase Simulation of a Liquid Jet in a Lab-scale Ramjet Combustor (모형 램젯 연소기에서 액체제트의 다상유동 해석)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.386-392
    • /
    • 2010
  • The multiphase simulation of a liquid jet in a lab-scale ramjet combustor with a plain orifice type injector was studied with a commercial CFD tool, a FLUENT program. The objectives of the current study are to analysis the breakup characteristics of a hexane liquid jet in a cross flow and to derive the correlation between flow conditions and drag force coefficients in a test section. From the result of a numerical simulation, we concluded that a DPM and Realizable $k-{\varepsilon}$ model with an enhanced wall treatment were available to simulate the multiphase flow simulation. And the calculated distribution of a hexane vapor concentration was well-matched with experimental results.

  • PDF

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Numerical Study on the Similarity between the Fully Developed Turbulent Flow in an Orthogonally Rotating Square Duct and that in a Stationary Curved Square Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관 내에서의 완전 발달된 난류 유동의 유사성에 관한 수치적 연구)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.731-740
    • /
    • 2001
  • A numerical study on the quantitative analogy between the fully developed turbulent flow in a straight square duct rotating about an axis perpendicular to that of the duct and that in a stationary curved duct of square cross-section is carried out. In order to clarify the similarity of the two flows, dimensionless parameters K(sub)TR=Re(sup)1/4/√Ro and Rossby number, Ro, in a rotating straight duct flow were used as a set corresponding to K(sub)TC=Re(sup)1/4/√λ and curvature ratio, λ, in a stationary curved duct flow so that they have the same dynamical meaning as those of the fully developed laminar flows. For the large values of Ro or λ, it is shown that the flow field satisfies the asymptotic invariance property, that is, there are strong quantitative similarities between the two flows such as flow patterns and friction factors for the same values of K(sub)TR and K(sub)TC.

Numerical Study of Turbulent Flow and Combustion in a Micro Combustor with a Baffle Plate (배플이 부착된 마이크로 연소기의 난류유동 및 연소에 대한 수치해석 연구)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • Turbulent flow and combustion characteristics in a micro can combustor with a baffle plate are investigated by a Reynolds Stress Model. In order to examine the geometric effects on the turbulent combusting flow, several baffle configurations are selected. The interrelation between the flow structure and the thermal field are investigated by examing the variation of recirculation region, flame length and heat loss. For the flow mixing, the decreasing air hole is more efficient than the decrease of the fuel hole. As the fuel or air hole diameter decreases, combustion efficiency is enhanced and flame length is decreased. Additionally, as the diameter of air hole decreases, the heat loss and combustion temperature are increased, while they are reduced with decreasing the diameter of fuel hole.

A Numerical Analysis of Sediment-laden Flow in Open Channel with Bed-load Effect (개수로에서 소유사의 영향을 고려한 부유입자 유동에 관한 수치적 연구)

  • Yun, Jun-Yong;Gang, Seung-Gyu;Gang, Si-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.461-469
    • /
    • 2000
  • An numerical analysis of sediment-laden flow is carried out, and results are compared with the experiments of Coleman(1981, 1986) that included the several cases varying sediment size and quantity in open channel flow. K-$\omega$ turbulence model is selected for the fully turbulent flow field, and the concentration equation considering the fall velocity is adopted for the concentration field. The model of Einstein and Chien(1955) is applied to couple the velocity field and the concentration field. Most of researches have been carried out without considering the bed-load thickness, but it is found that the bed-load thickness cannot be ignored in case of a large amount of sediment or a large size of it. The bed-load thickness and surface roughness are considered in this study. Here, $\beta$ value, which is defined by the reciprocal of turbulent Schmidt number and is related with the concentration profile, is found to be varied according to the sediment size and quantity. Even though most of researchers have insisted that $\beta$ had always larger than 1.0, it may be concluded that $\beta$ can have smaller value than 1.0, that is coincident with the report of recent research.

  • PDF

A Study on the Plane Turbulent Offset Jet (평면 난류 오프셋 제트에 관한 연구)

  • 유정열;강신형;채승기;좌성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.357-366
    • /
    • 1986
  • The flow characteristics of two-dimensional turbulent offset jet which is discharged parallel to a solid wall has been studied experimentally and numerically. In the experiment, 3-hole pitot tube and 2 channel constant temperature hot-wire anemometer are used to measure local mean velocity, turbulence intensity and Reynolds stress while scannivalve is used to measure the wall pressure distribution. It is confirmed experimentally that local mean velocity is closely related to wall pressure distribution. It is also verified that for large Reynolds numbers and fixed step height there exists a similarity in the distribution of wall pressure coefficient. The maximum values of turbulence intensity occur in the top and bottom mixing layers and the magnitude of Reynolds stress becomes large in the lower mixing layer than in the top mixing layer due to the effect of streamline curvature and entrainment. In the numerical analysis, standard k-.epsilon. model based on eddy viscosity model and Leschziner and Rodi model based on algebraic stress model are adopted. The numerical analyses predict shorter reattachment lengths than the experiment, and this difference is judged to be due mainly to the problem of turbulence model constants and numerical algorithm. This also causes the inconsistency between the two results for other turbulence quantities in the recirculation region and impingement region, which constitutes a subject of a continued future study.

Ocean Wave Analysis around Ship and Numerical Review (선체주위의 해양파 해석 및 수치적 고찰)

    • Journal of Korean Port Research
    • /
    • v.11 no.1
    • /
    • pp.121-128
    • /
    • 1997
  • To analyze the ocean wave more efficiently, more fine grids are used with relatively less computer memory. Each element of free surface is discretized into more fine grids because the ocean waves are much influenced by the mesh used in the finite difference scheme. According to the flow analysis, remarkable improvements could be seen in the free surface generation. The multi grid is applied to confirm the validity of scheme. The Baldwin Lomax turbulence model is used for the analysis of S103 Inuid ship. Finally some discussion on experiments was made for the physical phenomena of the viscous

  • PDF

Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model (저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석)

  • Kim, W.K.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

Effects of Multi-hole Baffle Thickness on Flow and Mixing Characteristics of Micro Combustor (다공배플 두께가 마이크로 연소기의 유동 및 혼합특성에 미치는 영향)

  • Kim, Won Hyun;Park, Tae Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.623-629
    • /
    • 2017
  • Flow structure and mixing characteristics in a micro combustor with a multi-hole baffle were numerically studied using the Reynolds stress model. The multi-hole baffle has geometrical features to produce multiple three-dimensional vortices inside combustion chamber. When the thickness of the baffle's geometrical factors changes, variations of vortical structures occur variously. Among these vortices, the vortex generated from the fuel stream exerts a critical influence on the mixing enhancement. The three-dimensional vortical structure, in its development state, was strongly dependent on the baffle thickness. In particular, as the baffle thickness decreases to values less than the diameter of the fuel hole, the jet stream in baffle holes changes from the parabolic to saddleback profile type. The sizes of recirculation zones inside combustion chamber and the mixing state were closely affected by the structure of the jet streams.

Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models (난류 모형에 따른 수직 평판 위 파동 액막류의 수치해석 연구)

  • Min, June Kee;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.373-380
    • /
    • 2014
  • Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.