• Title/Summary/Keyword: 난류유동해석

Search Result 843, Processing Time 0.037 seconds

Convective Heat Transfer Correlations for the Compact Heat Exchanger with Circular Tubes and Flat Tubes-Plate Fins (원형관 및 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 상관관계식)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.291-299
    • /
    • 2010
  • Aspect-ratio-based numerical analysis is carried out to investigate the air-side convective heat transfer characteristics in compact heat exchangers with circular tubes and flat tubes-plate fins. The RNG $k-{\varepsilon}$ model is adopted for turbulence analysis. The numerical analysis is carried out for aspect ratios ranging from 3.06 to 5.44 and for Reynolds numbers ranging from 1,000 to 10,000. The calculated results indicate a correlation between the friction factor and Colburn j factor in the compact heat exchanger system for the range of aspect ratios under consideration. The results obtained for circular tubes and flat tubes-plate fins in this study can be utilized to realize the optimal design of an air conditioning system.

CFD Analysis on Discharge Passage Flow of Hydrogen Reciprocating Compressor (왕복동식 수소압축기의 토출구 유동에 관한 CFD해석)

  • Lee, Gyeong-Hwan;Rahman, Mohammad-Shiddiqur;Chung, Han-Shik;Jung, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.561-566
    • /
    • 2008
  • The reciprocating compressor is widely used in the industry field, because it has simple principle and high efficiency. In this work, in order to improve design of discharge passage line in hydrogen compression system Numerical analysis was conducted. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including velocity, pressure and turbulence kinetic energy distribution of hydrogen gas going out from the cylinder to discharge-path line are presented in this paper. Discharge-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows velocity, pressure and turbulent kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement might be done.

  • PDF

Numerical Analysis on the Transient Load Characteristics of Supersonic Steam Impinging Jet using LES Turbulence Model (LES 난류모델을 이용한 초음속 증기 충돌제트의 과도하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In the case of high-energy line breaks in nuclear power plants, supersonic steam jet is formed due to the rapid depressurization. The steam jet can cause impingement load on the adjacent structures, piping systems and components. In order to secure the design integrity of the nuclear power plant, it is necessary to evaluate the load characteristics of the steam jet generated by high-energy pipe rupture. In the design process of nuclear power plant, jet impingement load evaluation was usually performed based on ANSI/ANS 58.2. However, U.S. NRC recently pointed out that ANSI/ANS 58.2 oversimplifies the jet behavior and that some assumptions are non-conservative. In addition, it is recommended that dynamic analysis techniques should be applied to consider transient load characteristics. Therefore, it is necessary to establish an evaluation methodology that can analyze the dynamic load characteristics of steam jet ejected when high energy pipe breaks. This research group has developed and validated the CFD analysis methodology to evaluate the transient behavior of supersonic impinging jet in the previous study. In this study, numerical study on the transient load characteristics of supersonic steam jet impingement was carried out and amplitude and frequency analysis of transient jet load was performed.

A Study on Improvement γ-Reθt Model for Hypersonic Boundary Layer Analysis (극 초음속 경계층 해석을 위한 γ-Reθt모델 개선 연구)

  • Kang, Sunoh;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Since boundary layer transition has a significant impact on the aero-thermodynamic performance of hypersonic flight vehicles, capability of accurate prediction of transition location is essential for design and performance analysis. In this study, γ-Reθt model is improved to predict transition of hypersonic boundary layers and validated. A coefficient in the production term of the intermittency transport equation that affects the transition onset location is constructed and applied as a function of Mach number, wall temperature, and freestream stagnation temperature based on the similarity numerical solution of compressible boundary layer. To take into account a Mach number dependency of transition onset momentum thickness Reynolds number and transition length, additional correlation equations are determined as function of Mach number and applied to Reθc and Flength correlations of the baseline model. The suggested model is implemented to a commercial CFD code in consideration of practical use. Analysis of hypersonic flat plate and circular cone boundary layers is carried out by using the model for validation purpose. An improvement of prediction capability with respect to variation of Mach number and unit Reynolds number is identified from the comparison with experimental data.

Temperature Prediction Method for Superheater and Reheater Tubes of Fossil Power Plant Boiler During Operation (화력발전 보일러 과열기 및 재열기 운전 중 튜브 온도예측기법)

  • Kim, Bum-Shin;Song, Gee-Wook;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The superheater and reheater tubes of a heavy-load fossil power plant boiler can be damaged by overheating, and therefore, the degree of overheating is assessed by measuring the oxide scale thickness inside the tube during outages. The tube temperature prediction from the oxide scale thickness measurement is necessarily accompanied by destructive tube sampling, and the result of tube temperature prediction cannot be expected to be accurate unless the selection of the overheated point is precise and the initial-operation tube temperature has been obtained. In contrast, if the tube temperature is to be predicted analytically, considerable effort (to carry out the analysis of combustion, radiation, convection heat transfer, and turbulence fluid dynamics of the gas outside the tube) is required. In addition, in the case of analytical tube temperature prediction, load changes, variations in the fuel composition, and operation mode changes are hardly considered, thus impeding the continuous monitoring of the tube temperature. This paper proposes a method for the short-term prediction of tube temperature; the method involves the use of boiler operation information and flow-network-analysis-based tube heat flux. This method can help in high-temperaturedamage monitoring when it is integrated with a practical tube-damage-assessment method such as the Larson-Miller Parameter.

A study on in-flight acoustic load reduction in launch vehicle fairing by FE-SEA hybrid method (FE-SEA 하이브리드 기법을 이용한 비행 중 발사체 페어링 내부 음향하중 저감에 관한 연구)

  • Choi, Injeong;Park, Seoryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.351-363
    • /
    • 2020
  • Launch vehicles are subject to airborne acoustic loads during atmospheric flight and these effects become pronounced especially in transonic region. As the vibration due to the acoustic loads can cause malfunction of payloads, it is essential to predict and reduce the acoustic loads. In this study, a complete process has been developed for predicting airborne vibro-acoustic environment inside the payload pairing and subsequent noise reduction procedure employing acoustic blankets and Helmholtz resonators. Acoustic loads were predicted by Reynolds-Averaged Navier-Stokes (RANS) analysis and a semi-empirical model for pressure fluctuation inside turbulent boundary layer. Coupled vibro-acoustic analysis was performed using VA One SEA's Finite Element Statistical Energy Analysis (FE-SEA) hybrid module and ANSYS APDL. The process has been applied to a hammerhead launch vehicle to evaluate the effect of acoustic load reduction and accordingly to verify the effectiveness of the process. The presently developed process enables to obtain quick analysis result with reasonable accuracy and thus is expected to be useful in the initial design phase of a launch vehicle.

Flow Analysis in Road Gutter Storage Using Fluent Model (Fluent 모형을 이용한 도로 측구 저류조에서의 흐름 분석)

  • Kim, Jung Soo;Lee, Min Sung;Han, Chyung Such;Yoo, In Gi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.234-234
    • /
    • 2022
  • 도로에서의 우수를 원활하게 처리하기 위해서 빗물받이 및 연결관 등의 노면 배수시설이 설치되고 있으며, 노면 배수는 측구부를 통해 흘러 빗물받이 유입부로 차집되고 연결관을 통해 하수관거로 배수된다. 그러나 최근 국내 기상패턴의 변화로 국지성 집중호우와 같이 시간당 강우량 증가로 도로부와 저지대에서 배수시설의 배수불량에 따른 도심지 내수침수 피해가 발생하고 있다. 이에 정부에서는 다양한 우수관거 개선사업, 빗물펌프장, 지하저류조와 같은 방재시설을 설치하고 있으나 우수유출저감시설은 대규모 예산이 소요되고 실제 침수지역에 피해 저감효과에 대한 효용성 문제에 대한 제기뿐만 아니라 과밀화된 도심지에서는 지하공간 활용에 한계가 있는 실정이므로 도심지의 다양한 공간을 활용한 도시 배수 및 저류시설에 대한 연구가 필요하다. 따라서 본 연구에서는 유휴 공간인 도로 측구부 공간을 활용하여 도로 노면수를 저류 및 지체할 수 있는 노면수 측구 저류시설의 개념을 제시하고 측구저류조의 활용성을 판단하기 위하여 빗물받이 유입구, 빗물받이, 측구 저류조 및 빗물받이와 측구저류조 연결부에서의 노면수 유입, 유출 및 저류 등의 다양한 흐름 변화를 확인하기 위하여 Fluent 모형의 적용성을 분석하였다. 수치모의 전체 형상은 50x50cm 크기의 빗물받이를 기준으로 양쪽에 2m 길이의 측구 저류조를 원형관으로 연결하여 1/5 축소모형으로 구성하고 격자는 빗물받이 유입부, 빗물받이 및 측구 저류조 내부의 복잡한 3차원 흐름을 모의하기 위해 사면체와 육면체로 조밀하게 생성하였다. 다상유동해석을 위해 VOF(Volume of Fluid)방법을 적용하였고, 수치해석 방법으로는 비정상류, 난류 모형으로는 SST k-ω모형을 적용하였다. 수치모의 조건으로는 설계빈도별(5~30년) 우수유출량을 산정하여 유입 유량별 기존 빗물받이 유입부에서의 유입흐름, 빗물받이 내부에서의 와 발생흐름, 측구 저류조 및 연결관에서의 흐름을 구현하여 분석하였다. 수치모의 결과 빗물받이 유입부에서 연결관을 통한 측구 저류조로 유입되는 유입흐름과 빗물받이 하단부의 배수관을 통해 유출되는 흐름을 정상적으로 구현하였으며, 빗물받이 유입부 및 측구 저류조 연결관에서의 유속변화도 확인할 수 있었다. 또한 빗물받이와 측구 저류조에서 다양한 흐름을 구현하기 위한 Flunet 모형의 적용성을 검토하였으며, 향후 수리실험을 통하여 실제 흐름과의 매개변수 최적화 및 다양한 도로 조건의 변화를 고려한 수치모의 분석을 통하여 지속적인 모형의 검증이 가능할 것으로 판단된다.

  • PDF

Can We Hear the Shape of a Noise Source\ulcorner (소음원의 모양을 들어서 상상할 수 있을까\ulcorner)

  • Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.586-603
    • /
    • 2004
  • One of the subtle problems that make noise control difficult for engineers is “the invisibility of noise or sound.” The visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical or numerical means to visualize the sound field have been attempted and as a result, a great deal of progress has been accomplished, for example in the field of visualization of turbulent noise. However, most of the numerical methods are not quite ready to be applied practically to noise control issues. In the meantime, fast progress has made it possible instrumentally by using multiple microphones and fast signal processing systems, although these systems are not perfect but are useful. The state of the art system is recently available but still has many problematic issues : for example, how we can implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently it is often difficult to determine the origin of the noise and the spatial shape of noise, as highlighted in the title. The first part of this paper introduces a brief history, which is associated with “sound visualization,” from Leonardo da Vinci's famous drawing on vortex street (Fig. 1) to modern acoustic holography and what has been accomplished by a line or surface array. The second part introduces the difficulties and the recent studies. These include de-Dopplerization and do-reverberation methods. The former is essential for visualizing a moving noise source, such as cars or trains. The latter relates to what produces noise in a room or closed space. Another mar issue associated this sound/noise visualization is whether or not Ivecan distinguish mutual dependence of noise in space : for example, we are asked to answer the question, “Can we see two birds singing or one bird with two beaks?"

Analysis of Fluid Flows in a High Rate Spiral Clarifier and the Evaluation of Field Applicability for Improvement of Water Quality (고속 선회류 침전 장치의 유동 해석 및 수질 개선을 위한 현장 적용 가능성 평가)

  • Kim, Jin Han;Jun, Se Jin
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The purpose of this study is to evaluate the High Rate Spiral Clarifier(HRSC) availability for the improvement of polluted retention pond water quality. A lab scale and a pilot scale test was performed for this. The fluid flow patterns in a HRSC were studied using Fluent which is one of the computational fluid dynamic(CFD) programs, with inlet velocity and inlet diameter, length of body($L_B$) and length of lower cone(Lc), angle and gap between the inverted sloping cone, the lower exit hole installed or not installed. A pilot scale experimental apparatus was made on the basis of the results from the fluid flow analysis and lab scale test, then a field test was executed for the retention pond. In the study of inside fluid flow for the experimental apparatus, we found out that the inlet velocity had a greater effect on forming spiral flow than inlet flow rate and inlet diameter. There was no observable effect on forming spiral flow LB in the range of 1.2 to $1.6D_B$(body diameter) and Lc in the range of 0.35 to $0.5L_B$, but decreased the spiral flow with a high ratio of $L_B/D_B$ 2.0, $Lc/L_B$ 0.75. As increased the angle of the inverted sloping cone, velocity gradually dropped and evenly distributed in the inverted sloping cone. The better condition was a 10cm distance of the inverted sloping cone compared to 20cm to prevent turbulent flow. The condition that excludes the lower exit hole was better to prevent channeling and to distribute effluent flow rate evenly. From the pilot scale field test it was confirmed that particulate matters were effectively removed, therefore, this apparatus could be used for one of the plans to improve water quality for a large water body such as retention ponds.

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.