• 제목/요약/키워드: 난류유동해석

검색결과 843건 처리시간 0.037초

대형버스 바디모델의 후류특성 및 후미 스포일러 효과에 관한 해석적 고찰 (A Numerical Investigation on the Wake Flow Characteristics and Rear-Spoiler Effect of a Large-Sized Bus Body)

  • 김민호;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.126-133
    • /
    • 2003
  • The aerodynamic characteristics of automobiles have received substantial interest recently. Detailed knowledge of the vehicle aerodynamics is essential to improve fuel efficiency and enhance stability at high-speed cruising. In this study, a numerical simulation has been carried out for three-dimensional turbulent flows around a commercial bus body. Also, the effect of rear-spoiler attached at rear end of bus body was investigated. The Wavier-Stokes equation is solved with SIMPLE method in general curvilinear coordinates system. RNG $k-\varepsilon$ turbulence model with the MARS scheme was used for the evaluating aerodynamic forces, velocity and pressure distribution. The results showed details of the three-dimensional wake flow in the immediate rear of bus body and the effect of rear-spoiler on the wake structure. A maximum of 14% reduction in drag coefficient was achieved for a model with a rear-spoiler.

국내 FDS연구동향 및 적용사례분석 (A Case Analysis and Research Trends of FDS in Domestic)

  • 김봉찬;이랑;김동은;이주희;권영진
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2011년도 추계학술논문발표회 논문집
    • /
    • pp.15-18
    • /
    • 2011
  • 본 연구는 국내 FDS연구동향 및 적용사례를 분석한 것으로서, 분석한 결과 FDS는 법의 개정 및 화재사고와 밀접한 관계를 가지는 것으로 판단되었다. 또한 FDS 수치해석시의 격자 민감도, 벽면의 난류유동 등의 문제점이 파악되어, 향후 개선되어야 할 것으로 판단된다.

  • PDF

고고도 모사용 초음속 디퓨져의 설계인자 및 작동인자에 대한 연구 (Study on Design- and Operating- Parameters of Supersonic Exhaust Diffusers Simulating high Altitude)

  • 윤상규;김진곤;성홍계;김용욱;오승협
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.303-306
    • /
    • 2007
  • 고고도 모사용 초음속 디퓨져의 설계 및 작동인자에 대한 영향을 파악하기 위하여 압축성 축대칭 Wavier-Stokes 방정식 기반의 two-layer k-$\varepsilon$ 난류 수치해석과 실험 결과를 비교 분석하였다. 디퓨져의 설계 및 작동인자인 노즐과 디퓨져의 면적비, 진공챔버의 크기, 제트의 공급압력에 대한 디퓨져내 유동 발달과 디퓨져 작동 특성을 살펴보았다.

  • PDF

3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 - (Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up -)

  • 양장식
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.

사각단면을 갖는 90° 급곡관의 3차원 난류유동 해석 (Three Dimmensional Turbulent Flow Analysis in a 90° Square Sectioned Duct with Strong Curvature)

  • 맹주성;이종신
    • 설비공학논문집
    • /
    • 제3권1호
    • /
    • pp.11-25
    • /
    • 1991
  • The steady, incompressible developing 3-dimensional turblent flow in a square sectioned curved duct has been investigated by using partially-parabolic equation and Finite Analytic Method. The calculation of turbulent flow field is performed using 2-equation K-$\epsilon$ turbulence model, modified wall function, simpler algorithm and numerically generated body fitted coordinates. Iso-mean velocity contours at the various sections are compared with the existing experimental data and elliptic solutions by other authors. In the region of $0^{\circ}<{\theta}<71^{\circ}$, present results agree with the experimental data much better than the elliptic solution for the similar number of grid points. Furthermore, for the same tolerance, the present solution converges four times faster than the elliptic solution.

  • PDF

냉장고 내부의 냉기 유동특성에 관한 3차원 해석(I) (3-Dimensional Calculation on Cold Air Flow Characteristics in a Refrigerator)

  • 오민정;이재헌;오명도
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.382-395
    • /
    • 1995
  • A numerical study has been performed on flow characteristics in a domestic refrigerator whose size is $540mm{\times}1,530mm{\times}680mm$, considering existence of a fan and evaporator. The flow field has been simulated with the low Reynolds number $k-\bar{\varepsilon}$ turbulent model and SIMPLE algorithm based on the finite volume method. The region of fan which makes driving force for cold air distribution was modeled as a region in which momentum sources are generated uniformly. The concept of the distributed pressure resistance was applied to describe the momentum loss from evaporator. The result showed that the rate of cold air distribution into freezing room and cold storage room was almost 7 : 3.

  • PDF

주 유동의 난류특성이 원통 표면에서의 열전달에 미치는 영향에 관한 연구 - 수치 해석적 고찰 - (The Effect of Main Stream Turbulence on the Heat Transfer Around a Cylinder Surface)

  • 박정훈;최영기;유홍선
    • 설비공학논문집
    • /
    • 제3권3호
    • /
    • pp.186-196
    • /
    • 1991
  • Numerical analysis has been performed to investigate the effects of the turbulence intensity and Prandtl number on the local heat transfer around a circular cylinder in crossflow. The governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. For laminar flow, the calculations were performed for the Reynolds numbers 26 and 200. The results showed good agreement with the experimental results. For turbulent flow of the Reynolds number $1{\times}10^5$ and $2{\times}10^6$, the results showed that with an increase in the turbulent intensity in the main stream, the local Nusselt number increases in the front region of the circular cylinder. But the effect of turbulent intensity on the local Nusselt number diminishes in the wake region. The influence of Prandtl numbers show similar trend to that of turbulent intensity.

  • PDF

원봉주위의 난류유동에 대한 수치해석 (Numerical Prediction of Turbulent Flow over a Circular Cylinder)

  • 박태선
    • 한국전산유체공학회지
    • /
    • 제7권1호
    • /
    • pp.20-27
    • /
    • 2002
  • Flow over a circular cylinder is studied numerically using a turbulence model. Based on the κ-ε-f/sub μ/ model of Park and Sung[6], a new damping function is used. The efficiency of the strain dependent damping function is addressed for vortex-shedding flows past a circular cylinder. The mean velocity and Reynolds stresses are compared with available experimental data at Re/sub D/= 3900. Also, the computational results for the Strouhal number are evaluated at several Reynolds number. The predictions by κ-ε-f/sub μ/ model are in good agreement with the experiments.

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF

Fractional Step Method을 이용한 원형 실린더 주위의 난류 유동해석 (Turbulent Flow Analysis of a Circular Cylinder Using a Fractional Step Method)

  • 박금성;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.152-157
    • /
    • 2003
  • As computer capacity has been progressed continuously, the studies of the flow characteristics have been performing by the numerical methods actively. Recent numerical simulation has a tendency to require the higher-order accuracy in time, as well as in space. This tendency is more true in LES and acoustic noise simulation. In this study, 3-dimensional unsteady Incompressible Navier-Stokes equation was solved by numerical method using the fractional step method with the fourth order compact pade scheme to achieve high accuracy To validate the present code and algorithm, 3D flow-field around a cylinder was simulated. The drag coefficient and lift coefficient were computed and, then, compared with experiment. The present code will be tailored to LES simulation for more accurate turbulent flow analysis.

  • PDF