• Title/Summary/Keyword: 난류운동 에너지

Search Result 158, Processing Time 0.022 seconds

Flow Characteristics of Axi-symmetric Swirl Jet in the Initial Regions (축대칭 회전분사류의 초기 유동특성)

  • Han, Yong-Un;An, Yeong-Hui;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.531-538
    • /
    • 2002
  • Flow characteristics of a round jet with swirl number of 0.17 have been investigated using a hot -wire anemometry in the initial region within 10D(exit diameter). Swirl effects were observed by comparing centerline flow characteristics, similarities and turbulent budgets of a swirl jet and a free jet, respectively. To obtain similarity of the radial profiles mean velocity and higher moments were measured at the vertical pl anes, located at 2.5, 5.0, 7.5D, 10D, respectively. The centerline velocity characteristics were also measured. It is turned out that similarities of mean and Reynolds stress are established. The jet boundary has wider width than that of a free jet and the shear stress also becomes stronger. In addition the centerline decay becomes faster than that of the free jet, indicating that the swirl induces more entrainment in the initial region of the swirl Jet by transferring the axial mean kinetic energy into the swirl energy and, therefore, has wider boundary, compared with that of free jet.

A Study on Flow Characteristics with Ultrasonic Forcing in a Coaxial Circular Pipe by PIV Measurement (동심원관내에서 초음파가 가진된 유동특성의 PIV계측에 의한 연구)

  • Koo, J.H.;Park, Y.H.;Choi, W.C.;Song, M.G.;Ju, E.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.639-644
    • /
    • 2000
  • An experiment on the enhancement of turbulent flow with ultrasonic forcing was carried out by using PIV measurement in a coaxial circular pipe which could offer characteristics of the turbulence flow plentifully through its jet. A large transparent acryl tank and a coaxial circular pipe nozzle were made for the above research. city water of $25^{\circ}C$ was selected as an experimental liquid and the front flow field of the coaxial circular pipe was divided vertically as 3 measuring regions to observe characteristics of flow phenomena. characteristics of fluid flow such as velocity vector distribution, kinetic energy, turbulent intensity and etc. were visualized, observed, examined and considered at 5 kinds of Re No. such as $Re=1{\times}10^3,\;2{\times}10^3,\;3{\times}10^3,\;5{\times}10^3,\;1{\times}10^4$. In result it was proved that ultrasonic vibration affected the enhancement of turbulent flow.

  • PDF

Analysis of the turbulent flow on the periodically arranged semi-circular ribs in a rectangular channel (사각채널 내 주기적으로 배열된 반원 리브 영향의 유동해석)

  • Lee, G.H.;Nine, Md.J.;Choi, S.H.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.31-36
    • /
    • 2011
  • The flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow have been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio was 0.07 and rib height to channel height ratio was e/H=0.117. The v2-f turbulence model and SST k-${\omega}$ turbulence model were used to find the flow characteristics of near the wall which are suited for realistic phenomena. The numerical analysis results show turbulent flow characteristics and pressure drop at the near the wall as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow, and v2-f turbulence model simulation results have a good agreement with experimental.

A Study on the Flow Characteristics in Ejector by PIV and CFD (PIV와 CFD에 의한 Ejector내의 유동특성 연구)

  • Park, Ji-Man;Lee, Haeng-Nam;Park, Kil-Moon;Lee, Duk-Gu;Sul, Jae-Lim
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.723-728
    • /
    • 2003
  • The Ejector is used to get low pressure, and it has been applied to a lot of industry field like the heat engine, the fluid instrument power plant, the food industry, environment industry etc... because there are not any problem even it is mixed with a any kind of liquid, gas, and solid. The flow characteristics in ejector are investigated by PIV and CFD. The experiment using PIV measurement for mixing pipe's flow characteristics acquired velocity distribution, kinetic energy distribution, and whirlpool . (Condition : when mixing pipe's diameter ratio is 1:1.9, and the flux is $Q_{1}=1.136{\imath}/s$, $Q_{2}=1.706{\imath}/s$, $Q_{3}=2.276{\imath}/s$. Based on the PIV and the CFD results, the flow characteristics in ejector are discussed, and it shows the validity of this study.

  • PDF

Numerical Analysis on the $2^{nd}$ Discharae-passase In Reciprocating Compressor (왕복동식 수소압축기의 2단 토출통로 유동해석)

  • Lee, G.H.;Rahman, M. Sq.;Kim, C.P.;Joung, T.W.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.27-32
    • /
    • 2009
  • Numerical analysis information of a complex discharge-passage will be very useful to improve hydrogen compression system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas from cylinder going to the chamber of a reciprocating compressor are presented in this paper. Discharge-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the hydrogen compressing system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement should be done. Consequently, development of the better hydrogen compressing system will be achieved.

  • PDF

Three-Dimensional Numerical Study on the Aerodynamic Characteristics around Corner Vane in Heavy-Duty Truck (대형 트럭 코너베인 주위의 공력특성에 관한 3차원 수치해석)

  • 김민호;정우인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.181-189
    • /
    • 2000
  • The aerodynamic characteristics of large transport vehicle has become more and more important in recent vehicle design to improve driving performance in high speed cruising and raise the product valve with regard to a comfortable driving condition. Hence, detailed knowledge of the flow field around truck coner vane is essential to improve fuel efficiency and reduce the dirt contamination on vehicle body surface. In this study, three-dimensional flow characteristics around corner vane attached to truck cabin were computed for the steady, incompressible, and high speed viscous flow, adopting the RNG k-$\varepsilon$ turbulence model. In order to investigate the influence of configuration and structure of corner vane, computations were carried out for four cases at a high Reynolds number, Re=4.1$\times$106 (based on the cabin height). The global flow patterns, drag coefficient and the distributions such as velocity magnitude, turbulent kinetic energy around the corner vane, were examined. As a result of this study, we could identify the flow characteristics around corner vane for the variation of corner vane length and width. Also, suggest the improved structure to reduce the dirt contamination in cabin side.

  • PDF

General Derivation of Two-Fluid Model (2상 유동 모델의 일반적인 유도)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • General time-volume averaged conservation equations and jump conditions for two-phase flows are derived here. The time-averaged equations for a single phase region in two-phase flow are obtained from local instant balance equations by a technique often used for single phase turbulent flow equations. The results obtained by integrating the time averaged equations over a flow volume are spatially averaged twice; first, they are averaged over a single phase region of the k-th phase and then averaged over the total volume of the k-th phase, in a flow volume. The mass, momentum, and energy conservation equations are obtained from the general time-volume averaged equations. The advantages of the present model are explained by comparing it with Ishii's model (1) and Banerjee's model (2). Finally, the assumptions and approximate terms of the equations of the THERMIT-6S are clarified.

  • PDF

Development of a Preswirl Stator-Propeller System for Improvement of Propulsion Efficiency : a Symmetric Stator Propulsion System (추진 효율 향상을 위한 고정날개-프로펠러 추진시스템 개발: 대칭형 고정날개 추진 시스템)

  • Jin-Tae Lee;Moon-Chan Kim;Jung-Chun Suh;Soo-Hyung Kim;Jin-Keun Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.132-145
    • /
    • 1992
  • A series of design, theoretical analysis and model test procedures is presented for the development of an axisymmetric stator-propeller system. A preswirl stator is located in front of a propeller in order to improve the propulsion efficiency by cancellation of the slip stream rotational velocity due to the propeller. Model test results show that propulsion efficiency gain due to the symmetric stator-propeller system is about 3% compared to the single propeller. This efficiency gain would increase for full scale application since the pressure drag coefficient of the stator would decrease due to increasement of turbulent intensity behind the hull wake and increasement of Reynolds number.

  • PDF

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

Computations of Morphological Change using Various Methods for Shear Stress (전단응력 산정 방법에 따른 하상변동량 분석)

  • Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.41-41
    • /
    • 2015
  • 하천의 지형을 조사하고 계측하는 것은 하천을 연구하는 전문가들에게 필수적인 일이다. 하지만 하천의 지형을 계측하는 것은 쉽지 않으며, 조사를 하여도 유사의 이송으로 인하여 하천의 지형은 시간이 지남에 따라 변하게 된다. 그러므로 실험이나 모델링을 통하여 하천의 지형을 예측하고 모의하는 것은 중요한 연구이다. 모델링을 이용하여 유사이송에 의한 하상변동을 잘 예측하기 위해서는 하천의 복잡한 흐름을 정확히 모의하는 것이 중요하며 유사를 발생시키는 힘인 하상전단응력을 정확히 산정하는 것 또한 중요하다. 하상의 전단응력을 산정하는 방법으로는 대표적으로 로그법칙에 의한 방법, 레이놀즈응력 분포를 이용한 방법, 난류운동에너지를 이용한 방법 등이 있다. 앞서 말한 방법으로 산정된 전단응력 값은 차이를 보이며, 이는 하상변동을 정확히 모의하는 것에 문제를 발생시킬 수 있다. 따라서 본 연구에서는 곡선좌표계를 이용하여 3차원 유동 및 하상변동을 모의할 수 있는 수치모형을 이용하여 전단응력 산정 방법에 따른 하상변동량을 분석하는 것이다. 하천의 복잡한 흐름을 정확히 모의하기 위하여 본 연구에서는 RANS (Reynolds Averaged Navier-Stokes) 방정식을 3차원으로 해석하여 흐름 계산을 하였고 유사량 산정공식과 Exner 방정식을 이용하여 유사이송에 의한 하상변동을 계산하였다. 흐름 계산의 검증을 위하여 선행 연구의 실험을 대상으로 모의하였다. 그리고 곡선으로 된 실험 수로를 대상으로 전단응력 산

  • PDF