• Title/Summary/Keyword: 낙석에너지

Search Result 39, Processing Time 0.022 seconds

Evaluation of Absorbing Energy for the Rockfall Protection Fence Using High Carbon Steel Wire Rods (경강선 적용 낙석방지울타리의 흡수에너지 평가)

  • Lee, Yongjoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.49-60
    • /
    • 2009
  • In order to develop a new rockfall protection fence using high carbon steel wire rod (HSWR) material instead of the conventional wire rope material, the author has conducted the laboratory strength tests of both materials and their connections, and carried out evaluation of absorbing rockfall energy through the vertical field rockfall tests. The vertical filed rockfall tests showed that the new rockfall protection fence with 12 rows of the HSWR could absorb more rockfall energy than 50 kJ which stands for the typical design criteria. In addition, when the quantity of HSWR was increased up to the 16 rows, the capacity of absorbing energy was greatly improved. The new rockfall protection fence was successfully applied to the highway rock-cut slope. As a result of the filed application, its constructability was similar to the conventional fence, but its total image was improved as simple and clean. The total construction cost was saved up to 20% in comparison with the conventional one.

  • PDF

Design and Analysis of Rockfall Prevention Fence (낙석방지울타리의 설계 및 해석)

  • Mun, Ji-Ho
    • Computational Structural Engineering
    • /
    • v.34 no.3
    • /
    • pp.27-36
    • /
    • 2021
  • 본 기사에서는 낙석방지울타리의 설계 및 해석에 대하여 설명하였다. 국내에는 50kJ급의 표준 낙석방지울타리가 널리 적용되고 있지만 이보다 더 큰 낙석이 빈번하게 발생하고 있으며 상황에 따라서는 50kJ급보다 작은 낙석에너지에 저항할 수 있는 경제적인 낙석방지울타리도 필요하다. 이를 위하여 낙석방지울타리를 사면의 특성에 맞도록 설계를 하여야 하며 성능을 검증하여야 한다. 이 때 실험적 성능검증은 많은 비용과 시간이 필요함으로 해석적 접근방법을 통하여 경제적인 성능검증을 할 수 있다. 이에 낙석방지울타리에 대한 기존 해석적 연구를 소개하였으며 이와 유사한 방법을 통하여 새로운 낙석방지울타리의 설계 혹은 성능보강 시에 활용할 수 있을 것으로 기대된다.

Comparison of Domestic and Foreign Design Guides of Rockfall Protection Barriers (낙석방지 울타리에 대한 국내.외 설계 지침 비교)

  • Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi;Kim, Kyoung Ju
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.183-183
    • /
    • 2011
  • 전 국토의 65%가 산악지형으로 이루어져 있는 우리나라는 도로개설 및 산업기지 건설, 대규모 주택단지 개발 등으로 자연사면을 변형시키는 규모나 빈도가 증가하고 있고, 최근에는 기상이변에 의한 집중호우가 빈번히 발생하여 절토사면에서 낙석이 발생할 위험이 점점 높아지고 있는 실정이다. 낙석방지를 위한 대책공법으로는 낙석방지 망, 낙석방지 울타리 등이 있으며 이중에서 낙석방지 울타리는 국내의 국도 낙석방지 대책공법 중 70% 이상을 차지하고 있다. 그러나 국내 설계지침에는 낙석방지 울타리에 대한 다양한 성능등급과 성능평가를 위한 표준화된 시험방법이 제시되어 있지 않아 현장여건을 고려하여 적절한 낙석방지 울타리를 선정하고 낙석방지 울타리들의 성능을 비교검토하기에 어려움이 있다. 유럽의 경우 유럽연합 출범이후 낙석방지 시설에 대한 통합기준의 필요성이 대두되어 유럽 여러 나라의 성능평가 방법과 스위스의 설계지침을 고려하여 2008년에 유럽 통합 지침인 ETAG 27을 제정하였다. ETAG 27에는 낙석방지 울타리의 성능등급이 100kJ~4,500kJ이상 9등급으로 분류되어 있고 성능등급 별로 Service Energy Level과 Maximum Energy Level에 대하여 실물시험을 통한 성능평가 시험과 구성요소에 대한 검증시험을 수행하도록 되어있다. 실물시험은 낙석에너지의 산정과 낙석질량의 타격위치를 정확하게 결정할 수 있는 방법을 이용하여 수행토록 규정되어 있다. 미국의 경우에는 주별로 상이한 설계기준으로 인하여 발생하는 문제를 해소하기 위하여 2003년에 스위스의 설계지침을 준용하여 통합기준인 NCHRP Report 20-07을 결정하였다. NCHRP Report 20-07에는 낙석방지 울타리의 성능등급이 100kJ~5,000kJ까지 9등급으로 분류되어 있고 성능등급 별 낙석질량이 규정되어 있으며 등급별 낙석에너지의 50%와 100%에 대하여 실물시험을 통한 성능평가 시험을 수행하도록 되어 있다. 실물시험은 낙석에너지의 산정과 낙석질량의 타격위치를 정확하게 결정할 수 있는 방법을 이용하여 수행토록 규정되어 있다. 낙석방지 울타리에 대한 국내 설계지침과 유럽과 미국의 설계지침을 비교분석하고 국내에서 수행된 실물실험을 통한 성능평가 연구결과를 검토하였다. 또한 구성요소의 역학적 특성변화가 전체 시스템의 성능에 미치는 영향을 조사하기 위해서 국내 설계 지침에 제시된 낙석방지 울타리에 대하여 컴퓨터 시뮬레이션을 이용한 성능평가를 수행하였다. 이러한 연구결과에 근거하여 국내 설계지침은 현장여건에 따라 적절한 낙석방지 울타리를 선정할 수 있도록 다양한 성능등급을 규정하고, 낙석방지 울타리의 성능을 합리적으로 비교검토 할 수 있게 하는 표준화 성능평가 시험방법과 평가기준을 정립하며, 구성요소의 품질에 대한 신뢰성을 확인하는 구성요소의 검증시험을 포함하는 방향으로 개선될 필요가 있는 것으로 조사되었다.

  • PDF

A Study on Efficient Design of Rockfall Prevention Netting (낙석방지망의 효율적 설계를 위한 기초연구)

  • Lee, Jundae;Park, Soobeom;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.53-59
    • /
    • 2014
  • In order to obtain basic data for reasonable design of rockfall prevention net unreasonably being designed according to experiences, this paper determined a standard cross section and analyzed the effects of parameters such as inclination and height of slope faces, rockfall weight, separation distance on rockfall behaviors such as bounce height, kinetic energy and passage rate. The weight of rockfall changed from 400 kg to 700 kg and then to 1,000 kg. With the height of 20 m as the standard, the test was conducted with the inclination at $63^{\circ}$ and $55^{\circ}$ which may affect rockfall behaviors. Analysis was made while changing the fall height of rockfall from 3 m to 15 m and then to 20 m, thereby analyzing and evaluating changes in maximal kinetic energy occurring in the base of slope. According to the analysis result, in designing a rockfall prevention wire net, a design considering various conditions including inclination of the slope, expected size or weight of rockfall, situation of the slope and the shape of rockfall, and rockfall trace is judged necessary beyond the current uniform application.

Performance Evaluation Test of Rockfall Protection Fences for 100kJ Rockfall Protection Fences Development (100kJ급 낙석방지울타리 개발을 위한 기존 낙석방지울타리 성능평가 시험)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.5-13
    • /
    • 2022
  • In this study a test was conducted to identify weak section using 100kJ class rock energy to find out the protection performance of rockfall prevention fences in Korea. Performance rating of the rockfall protection fences is very low (48~61kJ) compared to that of foreign countries and it is necessary to determine whether it can function properly if high rock energy is generated. Furthermore, a reinforcing technology that can improve to 100kJ energy on the existing rockfall protection fences should be developed. Therefore, this study confirmed the protection performance using 100kJ rock energy in the existing rockfall protection fence system (for national road, for highway) and identified weak section of post, wire ropes and nets. Furthermore, it will be used as basic data for developing 100kJ class reinforcement technology without dismantling the existing rockfall protection fence (48-61kJ).

Integrated Analytical-Numerical Approach to Compute the Energy on Rock-fall Protection Fence (해석적-수치해석적 방법을 통한 낙석방지울타리에 작용하는 에너지 분석)

  • Kim, Hee Su;Hwang, Youngcheol;Jang, Hyun-Ick;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.57-64
    • /
    • 2019
  • A man-made slope has been increased due to the construction of road. This slope lies at risk of rock falling, induced mostly by heavy rainfall. The MOLIT (Ministry of Land, Infrastructure and Transport) recommends the specific dimension of rockfall protection fence (post, wire-rope, and mesh) which should resist 48~61 kJ. However, the energy absorption capacity of each component of rockfall protection fence is not clearly presented. Hence, this study made an effort to compute the energy absorption capacity of each component in analytical and numerical method, and compared with each other.

A Study on Efficient Prevention of Rockfall using Rockfall Simulation Program (낙석 시뮬레이션 해석을 이용한 효율적인 낙석 방지에 대한 연구)

  • Rhee, Jong-Hyun;Koo, Ho-Bon;Kim, Jin-Hwan;Son, Young-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.581-584
    • /
    • 2008
  • This study analyzed activity of rockfall and its effect factor by the shape and mass. We performed research on the kinetic energy distribution, velocity and bounce height according to the rockfall characteristics using rockfall simulation program in cut-slope. In addition, this study discussed how to utilize kinetic energy and bounce height of rockfall for efficient establishment of rockfall prevention fence which is a countermeasure to cut-slope.

  • PDF

Performance Assessment for Rockfall Protection Systems II: Performance Assessment (낙석방지울타리의 성능평가 II: 성능평가)

  • Kim, Kee Dong;Ko, Man Gi;Kim, Dal Sung;Han, Ki Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.49-61
    • /
    • 2015
  • This is the second of two companion papers that describe the performance assessment for flexible rockfall protection systems. Described in a companion paper is the criteria to assess the performance of flexible rockfall protection systems. In this study the performance assessment of domestic rockfall protection fences was implemented using the criteria suggested in the companion paper. It was investigated that the rockfall protection fences for express highways performed well to resist the rockfall energy of 50kJ and the deformed rockfall protection fences right after impacting would not obstruct the vehicle traffic. However, to dissipate the rockfall energy of 50kJ with the level of European standards constantly, the spacing of wireropes was adjusted to be 200mm up to the 8th wirerope from the bottom and spacing-maintainers should be extended to the 8th wirerope. It was figured out that the rockfall protection fences for general highways were required to install spacing-maintainers as those for express highways because they, which did not have spacing-maintenance members, were very prone to the penetration of rockfall even for the very small rockfall impact energies.

Analysis of Ultimate Rockfall Energy Resistance of CFT Rock Shed Main Frame (CFT 피암터널 주구조체의 극한 낙석에너지 저항능력 분석)

  • Moon, Jiho;Lee, Juho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Rock sheds are a type of rockfall protection facility that is installed on the road near steep slopes, where large amount of rockfall is expected. Rock sheds are generally designed to resist approximately 200 kJ to 3,000 kJ of rockfall energy. In a previous study, a new type rock shed structure having a concrete-filled tube (CFT) main frame was proposed. By using CFT as the main frame in a rock shed, rapid construction is possible. Additionally, high load carrying capacity and ductility can be achieved. The behavior of the proposed rock shed structure was studied via elastic analysis with the equivalent static load of rockfall energy as in a previous study. However, it is necessary to investigate the behavior of the proposed rock shed in more detail with a full 3D finite element (FE) model considering realistic rockfall load. The FE model for the CFT rock shed main frame was developed first in this study. Then, the resistance of the CFT rock shed main frame Under ultimate rockfall energy was investigated.

Characteristics and Energy Absorbing Capacity for Rockfall Protection Fence from In-Situ Rockfall Tests (현장 낙석실험을 통한 낙석방지울타리의 특성 및 성능 평가)

  • 구호본;박혁진;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.111-121
    • /
    • 2001
  • Rockfall protection fences are used for diminishing rockfall damage in roads side slopes. In order to install the fences in effective way, the conditions of rock slopes and total predicted impact energy of fa11ing rock should be considered. However, the fences have been constructed without any consideration for lithology, height and slope angle of rock slope in Korea. In addition, the information about the performance of the protection fences, which should be evaluated by in-situ test or laboratory test in order to check out the practical use in the field, is not available. Therefore, in design manual for the rockfall protection fence, the specific details for the installation of this type of fence are not provided yet. The full sized rockfall in situ test was carried out for the calculation of falling energy of rock and the evaluation of the maximum energy absorbing capacity of fence. For this test, the rock slopes whose heights are about 20 m and dip angle of 65 degree, have been chosen. This is because those geometries are mean height and slope angle of most road cut slopes along Korean national highway. Based on the preliminary simulation procedure, four different sizes of concrete ball (0.7, 1.3, 2.3 and 4.3 ton) were prepared and flour different types of protection fence were constructed. The results of this test provide information about the maximum energy absorbing capacity of the fence, kinetic energy of rockfall and restitution coefficient, and these results can be utilized in the establishment of rockfall fence design and construction manual.

  • PDF