• Title/Summary/Keyword: 낙석시험

Search Result 52, Processing Time 0.016 seconds

A Study on CBR Characteristics of National Highway in Yeongnam Region (영남지역 국도에 사용된 흙의 CBR 특성에 관한 연구)

  • Park, Yeong-Mog;Lee, Go-Hyeun;Kim, Nak-Seok;Cho, Gyu-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.535-543
    • /
    • 2016
  • This study has been carried out to evaluate the CBR characteristics and the correlations among every soil properties of National road in Yeongnam region. Total of 480 soil samples were collected from 41 administrative districts for more than 30 years. Their physical and mechanical properties such as natural water content, the Atterberg limit, No. 200 sieve passing, the compaction test and the CBR test results were involved. The soils in Yeongnam region, SM, SC, SP and CL by USCS have predominated approximately 79%. The test results show that average CBR values of gravel and sand range from 12.7% to 20.3% and those of silt and clay range from 4.8% to 7.1%. It means that average CBR values of fine grained soils are less than a half of coarse grained one. Natural water content, No. 200 sieve passing, optimum moisture content and maximum dry density of soils are well correlated with CBR values. Especially, it presents that No. 200 sieve passing is the best correlation factor with CBR value. If consider the partition off this region into 6 zones of classified by mother rock, the correlation between CBR value and every soil properties tends to increase. It is suggested that tables, figures and the regressions described in this paper may be available for designers and engineers to understand the characteristics of an embankment materials in Yeongnam region.

An Evaluation of Crack Resistance for Slag Asphalt Concrete Mixture Using Steel Slag Aggregates (제강슬래그 골재를 사용한 슬래그 아스팔트 혼합물의 균열저항성 평가)

  • Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • With the continuous industrial development, not only natural resource depletion, waste generation, but also various weather conditions are becoming more frequent. Efforts are continuing to recycle industrial by-products to overcome the climate crisis and save resources. Slag is a representative by-product generated in the steel industry, and it is characterized by improving rutting resistance and moisture sensitivity by increasing strength and reducing deformation when used as a material for asphalt concrete. On the other hand, slag has expansion properties so it is used as a relatively low-value-added material such as embankment and refilling materials. In order to expand the application of slag, an experiment was conducted to evaluate the crack resistance of slag asphalt concrete pavement. As a result of the indirect tensile strength test, it was found that the asphalt mixture using slag aggregate showed a value 1.13 times higher than that of the general HMA with the same particle size, and the toughness was 1.17 units, improving crack resistance. In addition, it was found that the failure number of the 4-point beam fatigue experiment and the slag asphalt mixture was 20,409, which was more than doubled compared to the general HMA. Furthermore, Overlay Test showed a tensile load residual rate of 4 times or more, improving crack resistance to repeated fatigue. Accordingly, the use of slag aggregate will likely have various advantages in improving the performance of asphalt concrete pavement.