• Title/Summary/Keyword: 나피온 막

Search Result 54, Processing Time 0.022 seconds

Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes (나피온-알루미나 복합막을 사용한 이온성 폴리머-금속 복합체 작동기의 제작 및 성능 평가)

  • Lee, Jang-Woo;Kim, Woo-Sung;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.377-383
    • /
    • 2009
  • Ionic polymer-metal composite (IPMC) actuator generates bending actuation via ion/water flux to the cathode side under an electric field. Polyelectrolytes in IPMC should possess high water-retention capability, proton conductivity, and Young's modulus. In this study. for endowing IPMCs with these properties, Nafion-alumina composite membranes containing $\alpha$- or $\gamma$-aluminas of $4{\sim}8$ wt% were prepared. Mechanical moduli of Nafion-alumina composite membranes were $7{\sim}3$ MPa higher than that of Nafion, with the slight decrease in proton conductivity. At DC 3 V. the actuation performance of the Nafion-$\alpha$-alumina (8 wt%)-IPMC was superior to that of the typical Nafion-IPMC. exhibiting 2.7 times the displacement with an enhanced blocking force. The enhanced actuation performance with the Nafion-$\alpha$-alumina composite membranes was attributed to the higher proton conductivity, the elevated ion/water flux, and the lower interfacial electric resistance of platinum electrodes and membrane, compared with those containing $\gamma$-alumina.

Preparation of Self-humidifying Pt/Nafion Membranes using Supercritical $CO_2$ for PEMFCs (초임계유체를 이용한 PEMFC용 자가 가습 백금/나피온 막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Sung, Joon-Yong;Kim, Hwa-Yong
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.99-103
    • /
    • 2007
  • Pt/Nafion self-humidifying membranes for Polymer Electrolyte Membrane Fuel Cell (PEMFC) were synthesized via a supercritical-impregnation method. The Nafion 112 membranes were impregnated with Pt(II) acetylacetonate from a supercritical carbon dioxide ($scCO_2$) solution at $80^{\circ}C$ and 19.8 MPa. After the impregnation, the Pt-impregnated Nafion membrane was converted Pt deposited Nafion(Pt/Nafion) membrane by reducing agent, sodium borohydride ($NaBH_4$) under $50^{\circ}C$ and 2 hours. The prepared Pt/Nafion membranes were investigated by SEM, EDS and EPMA. The performance of the Pt/Nafion membranes was examined in PEMFC as a self-humidifying membrane. The cell performance of the Pt/Nafion membrane at $65^{\circ}C$ is better than that of Nafion 112.

  • PDF

A New Preparation Method of Nafion/Mordenite Composite Membrane for Polymer Electrolyte Membrane Fuel Cell above 100℃ Operation (100℃ 이상에서 작동하는 고분자 전해질형 연료전지용 나피온/Mordenite 복합체 막의 새로운 제조 방법)

  • 곽상희;양태현;김창수;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • The preparation method for composite membranes of high temperature operation above $100^{\circ}C$ for Polymer Electrolyte Membrane Fuel Cells (PEMFCs ) was presented, using perfluorosulfonylfluoride Nafion resin and mordenite, in addition to the physical properties, proton conductivity and single cells performance for it. The composite membranes were fabricated via melting of Nafion resin with various mordenite content. As the increase of mordenite content, at high temperature range, proton conductivity of the composite membrane increased due to the late dehydration rate of existent water in the mordenite. Also, from the result of the current-voltage relationship for single cells under $130^{\circ}C$ operation condition, the composite membrane cell with l0 wt% mordenite content showed better performance than that of the others over the entire current density range. This result indicated that the existent water in the composite membrane with l0 wt% mordenite content was higher than that with the others, thereby maintains its conductivity. Based upon the results of experiments, therefore, a Nafion/mordenite composite membrane prepared by this work is thought to be a satisfactory polymer electrolyte membrane for PEMFC operation above $100^{\circ}C$.

Surface Modification of Nafion by Layer-by-Layer Self-Assembled Films of Polyaniline and Sulfonated Poly(ether sulfone) for Direct Methanol Fuel Cell (직접 메탄올 연료전지용 나피온 막의 폴리아닐린/Sulfonated Poly(ether sulfone) 다층 자기조립 박막에 의한 표면 개질)

  • Ok, Jeong-Rim;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.256-261
    • /
    • 2008
  • In this study, Nafion membrane was modified to prevent methanol crossover by layer-by-layer self assembly using polyaniline (PANi) as a polycation and sulfonated poly(ether sulfone) (SPES) as a polyanion onto the Nafion surface. Since PANi and SPES possess thermal and chemical stability and rigid backbone, their layer-by-layer self-assembled films on the Nafion are expected to reduce methanol permeability and to increase mechanical stability. UV-Vis absorption spectroscopy verified a linear build-up of the multilayers of PANi and SPES. We found that the thickness per bilayer was about 10 nm by TEM measurement. Although modified Nafion membrane exhibited 15% decrease of proton conductivity, it reduceded 67% of methanol permeability compared to that of the pristine Nafion membrane, resulting in 2.5 times larger selectivity. At the performance test of the fuel cell using 5M methanol as a fuel, the modified Nafion membrane showed 2.4 times higher maximum power density at $30^{\circ}C$ and 1.4 times larger at $60^{\circ}C$ than the pristine Nafion.

Preparation and Characterizations of Ferroxane-Nafion Composite Membranes for PEMFC (PEMFC용 Ferroxane-나피온 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Oh, Gyu-Hyeon;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, the organic-inorganic composite membranes composed of iron oxide (Ferroxane) and Nafion were developed as an alternative proton exchange membranes (PEMs) in proton exchange membrane fuel cell (PEMFC). Acetic acid-stabilized lepidocrocite (${\gamma}$-FeOOH) nanoparticles (ferroxane) was synthesized, and the ferroxane-Nafion composite membranes were prepared by mixing Nafion with the ferroxane. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, thermal stability, etc. As a result, the ferroxane-Nafion composite membranes showed higher proton conductivity, IEC, thermal stability than Nafion recast membranes. The proton conductivity and IEC of the composite membrane with the best performance were $0.09S\;cm^{-1}$ and $0.906meq\;g^{-1}$, respectively.

Electrochemical Characteristics of the MFCs using the Ceramic Membrane as a Separator (세라믹막을 이용한 미생물연료전지의 전기화학적 특성 연구)

  • Lim, Ji-Young;Park, Dae-Seok;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5728-5735
    • /
    • 2015
  • This study attempts to verify the applicability of ceramic membrane as a separator by comparing the power generation characteristics in single-chamber MFCs using ceramic membranes to those in the MFCs using nafion membrane. The generated power in MFCs by using acetate as a substrate was more stable than that by using formate, propionate and butyrate, respectively. It was shown that the generated power by using formate substrate in MFCs was unstable and a little higher than that by using acetate, and the power generated by using propionate and butyrate were lower than that by using acetate. In order to find out the Pt catalyst effect, it was compared the power generated in MFCs using Pt-coated carbon cloth as electrode to that power using normal carbon cloth. The power generated in MFCs using Pt-coated carbon cloth as electrode was 1.2 times higher than that using normal carbon cloth. The Pt-coated carbon cloth was about 5 times more expensive than normal carbon cloth. It is suggested that both power generation efficiency and cost together should be considered in selecting electrodes of MFCs. It was found that the ceramic membrane was superior to nafion membrane by comparing to the power generation characteristics obtained. It was shown that average voltage values were $523.67mV{\pm}49.41mV$ by using synthetic wastewater, in MFCs of ceramic membrane as a separator. While average voltage values were $424.09mV{\pm}79.95mV$ by using synthetic wastewater, in MFCs of nafion membrane as a separator. The organic removal efficiency, 41.7% by using ceramic membrane was a little bit higher than 40.8% by using nafion membrane. This research implies ceramic membrane can be a valid alternative to nafion membrane as a separator when considering the power generation and the efficiency of organics removal.

Surface Charge and Morphological Characterization of Mesoporous Cellular Foam Silica/Nafion Composite Membrane by Using EFM (정전기력 현미경을 사용한 메조포러스 실리카/나피온 합성 이온교환막의 표면 전하 및 모폴로지 연구)

  • Kwon, Osung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1173-1182
    • /
    • 2018
  • Mesoporous silica allows proper hydration of an ion exchange membrane under low relative humidity due to its strong hydrophilicity and structural characteristic. A mesoporous silica and Nafion composite membrane shows good proton conductivity under low relative humidity. An understanding of ion-channel formation and proton transfer through an ion-channel network in mesoporous silica and Nafion composite membranes is essential for the development and the optimization of ion exchange membranes. In this study, a mesoporous cellular foam $SiO_2/Nafion$ composite membrane is fabricated, and its proton conductivity and performance are measured. Also, the ion-channel distribution is analyzed by using electrostatic force microscopy to measure the surface charge density of the mesoporous cellular foam $SiO_2/Nafion$ composite membrane. The research reveals a few remarkable results. First, the composite membrane shows excellent proton conductivity and performance under low relative humidity. Second, the composite membrane is observed to form ion-channel-rich and ion-channel-poor region locally.

Nonlinear variation of performance for a NAFION membrane humidifier with inlet temperature elevation (입구 온도에 따른 나피온 막 가습기 성능의 비선형적 변화)

  • Hwang, J.Y.;Kang, K.;Kang, H.S.;Kim, J.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • Effect of temperature elevation of inlet air on performance of a membrane humidifier for PEMFC vehicle application was investigated both experimentally and numerically. A shell-and-tube typed gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling is also conducted on a single tube geometry to explain this nonlinear behavior. The simulation revealed that the local water flux varies nolineary and dramatically along the tube. Analysis is based on competing role of temperature increase and relative humidity decrease, both of which seriously affect water conductivity of the membrane.

  • PDF