미병의 예방과 관리의 중요성이 거론되고 있으나, 미병에 대한 분류나 진단을 위한 확고한 근거가 미약한 상황으로서 미병 진단 인자 분류를 위한 생리시스템 모델 개발이 필요한 시점이다. 본 연구의 목적은 개발한 생리학적 모델이 미병 단계를 구별하는데 효과 및 유용성이 있는지를 임상 검증하기 위하여 생리학적 모델 인공지능 시뮬레이션을 개발하고자 함이다. 인공지능 계산은 3층으로 구성된 네트워크를 이용하였으며 각 층은 30개의 neuron들로 구성하였다. 인공지능망의 입력 값은 나이, 수축기 혈압, 이완기 혈압, 심박수 값 (입력 값 4개)이고 출력 값은 혈관 저항값인 Ra이다. 머신러닝 차수를 높이면서 인공지능을 사용하지 않은 생리적 모델로부터 도출된 결과와 인공지능을 통하여 계산된 결과를 비교하였다. 개발된 인공지능계산을 이용한 생리시스템 모델은 대량의 표본집단에서 임상 검증에 기여할 것이다.
2007년 한국인의 평균 수명은 78.5세(여성 82세, 남성 75세)로 나타났다. 의학의 발달은 세계적으로 노인인구를 증가시키고 있고 이미 우리나라도 유엔이 분류한 고령화 사회로 진입했다. 단순히 얼마나 오래 살았느냐를 나타내는 지표인 '평균수명'보다 건강하게 얼마나 살았느냐를 나타내는 지표인 '건강수명'이 더 중시되는 시대가 된 것이다. 건강수명 중에서도 '눈의 건강'은 젊게 사는 인생의 중요한 잣대이며 이에 따라 나이가 들면서 생기는 증상 중 하나인 노안에 대한 관심도 높아지게 됐다. 여기서 한 가지 주목할 점은 평균수명이 늘어나도 노안이 찾아 오는 시기는 45세에서 오히려 내려가고 있다는 점이다. 대개 45세 전후가 보편적이나 이전에 비해 30대 후반에 노안이 찾아오는 경우가 늘어나고 있는 것이 현실이다. 노안은 가까운 거리의 물체가 잘 보이지 않는 증상으로 노인들에게 흔히 나타나는 증상 중 하나였으나 최근엔 30대 후반에도 빈번하게 나타나고 있으니 적절한 관리와 주의가 요망된다. 그렇다면 노안의 증상과 치료방법에는 어떠한 것들이 있는지 알아보자.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.293-294
/
2016
스마트폰, 블랙박스, CCTV 등을 통해 다양하고 방대한 영상 데이터가 발생하고 있다. 그중에서 사람의 얼굴 영상을 통해 개인을 인식 및 식별하고 감정 상태를 분석하려는 다양한 연구가 진행되고 있다. 본 논문에서는 디지털영상처리 분야에서 널리 사용되고 있는 SIFT알고리즘을 이용하여, 얼굴영상에 대한 특징점을 추출하고 이를 기반으로 성별, 나이 및 기초적인 감정 상태를 분류할 수 있는 시스템을 제안한다.
Proceedings of the Korean Society of Disaster Information Conference
/
2016.11a
/
pp.400-401
/
2016
본 논문은 재난 리스크 평가를 위한 집계구 통계자료의 활용방안에 대한 연구를 수행하였다. 인구통계자료, 주택통계자료, 전국사업체 자료는 재난취약성분석과 리스크 평가를 위한 필수 요소이다. 재난의 분석과 평가를 위하여 GIS에 구축하는 자료로는 인구의 총인구, 평균나이, 인구밀도, 노령화지수, 교육수준 등이 있다. 이 자료들을 공간정보로 구축함으로써 기존의 넓은 수준의 데이터를 활용하는 것 보다 정밀한 분석이 가능하다고 판단된다. 또한, 인구와 관련된 데이터뿐만 아니라 집계구 통계 자료는 주택의 건축년도와, 주택의 유형(다세대, 아파트, 연립, 영업용건물주택의 정보를 가지고 있다. 이는 건물의 경제적 평가를 위한 자료로 활용될 것이다. 또한 선정된 지역의 사업체를 분류하여 각 폴리곤의 주요 사업체를 조사하여 공간정보를 구축함. 구축된 공간정보는 리스크 평가를 위한 자료로서 활용될 수 있다 판단된다.
우리나라 당뇨병환자의 95%를 차지하고 있는 제 2형 당뇨병(인슐린 비의존형 당뇨병)은 크게 두 가지 기전에 의해 발생하게 된다. 하나는 포도당을 사용하고 만들어내는 근육이나 간에서 인슐린이 제대로 작용하지 않는 인슐린 저항성이고, 다른 하나는 인슐린 저항성을 극복하기 위해 췌장에서 인슐린을 많이 만들어야 하는데 필요한 양만큼을 못 만들어내는 인슐린의 상대적 부족 상태이다. 따라서 이 두 과정을 해결하면 혈당을 떨어뜨리고 몸의 포도당 농도를 정상으로 만들 수 있게 된다. 두 번째 과정인 인슐린의 상대적 부족을 해결하여 혈당을 조절하는 것으로 췌장에서 인슐린 분비를 촉진시키는 약제가 설폰요소제, 메글리티나이드이다. 그리고 첫 번째 과정인 인슐린 저항성을 극복하여 혈당을 조절하는 약제가 본 연제에서 다루게 될 메트포르민, 치아졸리디네디온제 계통의 약물로 인슐린이 작용하는 근육, 간에서 인슐린이 보다 효율적으로 작용하게 하여 인슐린 효과 증강제로 분류한다.
Proceedings of the Korean Society of Computer Information Conference
/
2017.07a
/
pp.394-396
/
2017
본 논문에서는 최근이슈가 되고 있는 인공지능에 대한 많은 기술 가운데 인공신경망을 활용하여 자신이 가고자 하는곳의 여행정보를 스케줄링 하는 시스템을 제안한다. 인공신경망 중에서도 비지도 학습(unsupervised learning)방식을 이용하며 이용자의 가중치에 따라 여행의 나이, 기간, 장소, 종류, 날씨, 계절, 인원 등으로 여행에서의 요소들을 히든레이어로 구성하여 여행지의 스케줄을 구성하여 이용자에게 제공하는 형태이다. 가중치에 따른 여행지의 분류작업이 완료가 되면 기간과 장소의 위치정보에 따라 스케줄링 작업을 완료하게 된다. 기존의 여행지에 대한 정보를 검색에 의해서 이루어지던 환경에서 인공신경망을 활용하여 원하는 여행정보를 추출함으로써 이용자에게 여행정보에 대한 체계화된 정보를 제공할 수 있다.
인터넷 사용자가 급증하고, 인터넷을 통한 비즈니스에 수익 모델에 대한 관심이 높아지면서 방문자별로 맞춤 정보를 제공하는 퍼스널라이제이션이 인터넷 개발자 및 사용자들의 관심을 모으고 있다. 원투원 마케팅은 개별 고객의 성별, 나이, 소득 등 인구 통계 정보와 고객의 취미, 레저 등에 관한 정보 및 구매 패턴을 DB화하여 고객에게 가장 적절한 상품, 정보, 광고를 제공하는 것이다. 원투원 마케팅을 기본으로 개인과의 끊임없는 상호교류를 통해 고객에게 맞춤 서비스를 제공할수 있다. 본 논문에서는 맞춤 서비스 제공을 위한 전처리과정으로 클릭스트림 분석을 통한 확장된 웹 로그 정보를 통해서 고객들의 성향을 분석하였다. 그리고 이 웹 로그서버는 웹사이트로부터 얻은 로그정보를 분류하고 저장하여 관리자가 확장된 웹 로그 정보를 쉽게 분석할 수 있다. 이때 데이터베이스 저장 기술로 OLE DB Provider상에서 수행되는 ADO 기술을 사용함으로써 확장된 웹 로그 처리 시스템을 설계하였다. 확장된 웹 로그 DB를 패턴분석, 군집분석 등의 마이닝(Mining) 기법을 통하여 맞춤 서비스에 대한 사용자 프로파일을 구축 할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.535-538
/
2019
기존에는 Big Five Factor (BFF)를 이용하여 사람의 성격과 방문하는 장소 간의 관계를 분석하는 연구들이 많이 진행되었다. 본 연구에서는 성격뿐 아니라 sns 사용, 취미, 성별, 나이, 종교 등 다양한 요인을 추가하여 방문하는 장소에 영향을 미치는 요인을 찾고자 한다. 성격 데이터는 BFF 설문지로, 그 외 요인들은 본 연구팀이 직접 만든 설문지로 수집하였다. 방문하는 장소는 스마트폰 애플리케이션 SWARM을 이용하여 수집한 뒤 카테고리별로 분류하여 사용하였다. 총 17명의 참가자들이 약 3달간 모은 데이터를 사용하였다. 분석에는 앙상블 기법인 랜덤 포레스트를 사용하였다.
In this paper, we conducted various experiments with Bayesian networks in order to analyze clinical data of infertility patients. With these experiments, we tried to find out inter-dependencies among important factors playing the key role in clinical pregnancy, and to compare 3 different kinds of Bayesian network classifiers (including NBN, BAN, GBN) in terms of classification performance. As a result of experiments, we found the fact that the most important features playing the key role in clinical pregnancy (Clin) are indication (IND), stimulation, age of female partner (FA), number of ova (ICT), and use of Wallace (ETM), and then discovered inter-dependencies among these features. And we made sure that BAN and GBN, which are more general Bayesian network classifiers permitting inter-dependencies among features, show higher performance than NBN. By comparing Bayesian classifiers based on probabilistic representation and reasoning with other classifiers such as decision trees and k-nearest neighbor methods, we found that the former show higher performance than the latter due to inherent characteristics of clinical domain. finally, we suggested a feature reduction method in which all features except only some ones within Markov blanket of the class node are removed, and investigated by experiments whether such feature reduction can increase the performance of Bayesian classifiers.
This article studies on disability pensioners' characteristic with multinomial logit and logistic regression model. Seven factors are examined on whether each factor is reflected in degree of disability in the disability pension. By incorporating multinomial logit and logistic regression model, effectiveness and characteristic of the seven factors are investigated on the degree of disability. Result shows all the seven factors are significant on the degree of disability, while among the seven, five factors, age, sex, type of coverage, type of category, insured duration show a trend in degree of disability and the other two, cause of disability and class of standard monthly income are not effective on trend in degree of disability. Results from analyses might be useful for disability pension management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.