• Title/Summary/Keyword: 나이트 비전

Search Result 2, Processing Time 0.018 seconds

Design of Optimized RBFNNs based on Night Vision Face Recognition Simulator Using the 2D2 PCA Algorithm ((2D)2 PCA알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터 설계)

  • Jang, Byoung-Hee;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this study, we propose optimized RBFNNs based on night vision face recognition simulator with the aid of $(2D)^2$ PCA algorithm. It is difficult to obtain the night image for performing face recognition due to low brightness in case of image acquired through CCD camera at night. For this reason, a night vision camera is used to get images at night. Ada-Boost algorithm is also used for the detection of face images on both face and non-face image area. And the minimization of distortion phenomenon of the images is carried out by using the histogram equalization. These high-dimensional images are reduced to low-dimensional images by using $(2D)^2$ PCA algorithm. Face recognition is performed through polynomial-based RBFNNs classifier, and the essential design parameters of the classifiers are optimized by means of Differential Evolution(DE). The performance evaluation of the optimized RBFNNs based on $(2D)^2$ PCA is carried out with the aid of night vision face recognition system and IC&CI Lab data.

Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm (PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jang, Byoung-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we propose the design of optimized pRBFNNs-based night vision face recognition system using PCA algorithm. It is difficalt to obtain images using CCD camera due to low brightness under surround condition without lighting. The quality of the images distorted by low illuminance is improved by using night vision camera and histogram equalization. Ada-Boost algorithm also is used for the detection of face image between face and non-face image area. The dimension of the obtained image data is reduced to low dimension using PCA method. Also we introduce the pRBFNNs as recognition module. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned by using Fuzzy C-Means clustering. In the conclusion part of rules, the connection weights of pRBFNNs is represented as three kinds of polynomials such as linear, quadratic, and modified quadratic. The essential design parameters of the networks are optimized by means of Differential Evolution.