• 제목/요약/키워드: 나이브 베이즈 분류

검색결과 71건 처리시간 0.015초

영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축 (A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier)

  • 김유영;송민
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.71-89
    • /
    • 2016
  • 누구나 본인이 사용한 제품이나, 이용한 서비스에 대한 후기를 자유롭게 인터넷에 작성할 수 있고, 이러한 데이터의 양은 점점 더 많아지고 있다. 감성분석은 사용자가 생성한 온라인 텍스트 속에 내포된 감성 및 감정을 식별하기 위해 사용된다. 본 연구는 다양한 데이터 도메인 중 영화 리뷰를 분석 대상으로 한다. 영화 리뷰를 이용한 기존 연구에서는 종종 리뷰 평점을 관객의 감성으로 동일시하여 감성분석에 이용한다. 그러나 리뷰 내용과 평점의 실제적 극성 정도가 항상 일치하는 것은 아니기 때문에 연구의 정확성에 한계가 발생할 수 있다. 이에 본 연구에서는 기계학습 기반의 감성 분류기를 구축하고, 이를 통해 리뷰의 감성점수를 산출하여 리뷰에서 나타나는 감성의 수치화를 목표로 한다. 나아가 산출된 감성점수를 이용하여 리뷰와 영화 흥행 간의 연관성을 살펴보았다. 감성분석 모델은 지지벡터 분류기와 신경망을 이용해 구축되었고, 총 1만 건의 영화 리뷰를 학습용 데이터로 하였다. 감성분석은 총 175편의 영화에 대한 1,258,538개의 리뷰에 적용하였다. 리뷰의 평점과 흥행, 그리고 감성점수와 흥행과의 연관성은 상관분석을 통해 살펴보았고, t-검정으로 두 지표의 평균차를 비교하여 감성점수의 활용성을 검증하였다. 연구 결과, 본 연구에서 제시하는 모델 구축 방법은 나이브 베이즈 분류기로 구축한 모델보다 높은 정확성을 보였다. 상관분석 결과로는, 영화의 주간 평균 평점과 관객 수 간의 유의미한 양의 상관관계가 나타났고, 감성점수와 관객 수 간의 상관분석에서도 유사한 결과가 도출되었다. 이에 두 지표간의 평균을 이용한 t-검정을 수행하고, 이를 바탕으로 산출한 감성점수를 리뷰 평점의 역할을 할 수 있는 지표로써 활용 가능함을 검증하였다. 나아가 검증된 결론을 근거로, 트위터에서 영화를 언급한 트윗을 수집하여 감성분석을 적용한 결과를 살펴봄으로써 감성분석 모델의 활용 방안을 모색하였다. 전체적 실험 및 검증의 과정을 통해 본 연구는 감성분석 연구에 있어 개선된 감성 분류 방법을 제시할 수 있음을 보였고, 이러한 점에서 연구의 의의가 있다.