• Title/Summary/Keyword: 나이브 베이즈 분류

Search Result 71, Processing Time 0.024 seconds

Combining Feature Variables for Improving the Accuracy of $Na\ddot{i}ve$ Bayes Classifiers (나이브베이즈분류기의 정확도 향상을 위한 자질변수통합)

  • Heo Min-Oh;Kim Byoung-Hee;Hwang Kyu-Baek;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.727-729
    • /
    • 2005
  • 나이브베이즈분류기($na\ddot{i}ve$ Bayes classifier)는 학습, 적용 및 계산자원 이용의 측면에서 매우 효율적인 모델이다. 또한, 그 분류 성능 역시 다른 기법에 비해 크게 떨어지지 않음이 다양한 실험을 통해 보여져 왔다. 특히, 데이터를 생성한 실제 확률분포를 나이브베이즈분류기가 정확하게 표현할 수 있는 경우에는 최대의 효과를 볼 수 있다. 하지만, 실제 확률분포에 존재하는 조건부독립성(conditional independence)이 나이브베이즈분류기의 구조와 일치하지 않는 경우에는 성능이 하락할 수 있다. 보다 구체적으로, 각 자질변수(feature variable)들 사이에 확률적 의존관계(probabilistic dependency)가 존재하는 경우 성능 하락은 심화된다. 본 논문에서는 이러한 나이브베이즈분류기의 약점을 효율적으로 해결할 수 있는 자질변수의 통합기법을 제시한다. 자질변수의 통합은 각 변수들 사이의 관계를 명시적으로 표현해 주는 방법이며, 특히 상호정보량(mutual information)에 기반한 통합 변수의 선정이 성능 향상에 크게 기여함을 실험을 통해 보인다.

  • PDF

A Semantic Analysis of Korean Compound Nouns with Enforced Semantic Constraints using a Na${\ddot{i}}$ve Bayes Classifier (나이브 베이즈 분류기를 이용한 의미제약이 강화된 한국어 복합명사 의미 분석)

  • Lee, Yong-Hoon;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.102-106
    • /
    • 2011
  • 본 논문에서는 사전 원어정보를 이용한 기존 방법에 나이브 베이즈 분류기를 추가로 이용하는 의미제약 기술에 대하여 소개한다. 의미제약은 의미 분석의 전처리 단계로서 부분적으로 중의성을 해소하여 입력된 복합명사의 분석 정확도 뿐만 아니라 전체적인 분석시간의 단축에도 큰 도움을 준다. 나이브 베이즈 분류기를 이용하는 방법은 사전의 의존성으로 인해 제약할 수 없는 2-gram을 대상으로 제약을 시도한다. 분류기를 위한 학습데이터는 의미 태깅된 기분석 2-gram사전을 이용하여 U-WIN의 관계정보와 사전 그리고 패턴들에 의해 생성된다. 원어정보로 해결하지 못하는 34.63%의 2-gram중 2.83%에 대해 추가로 제약에 성공 하였다.

  • PDF

An Exploratory Study on Survey Data Categorization using DDI metadata (메타데이터를 활용한 조사자료의 문서범주화에 관한 연구)

  • Park, Ja-Hyun;Song, Min
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2012.08a
    • /
    • pp.73-76
    • /
    • 2012
  • 본 연구는 DDI 메타데이터를 활용하여 귀납적 학습모델(supervised learning model)의 문서범주화 실험을 수행함으로써 조사자료의 체계적이고 효율적인 분류작업을 설계하는데 그 목적이 있다. 구체적으로 조사자료의 DDI 메타데이터를 대상으로 단순 TF 가중치, TF-IDF 가중치, Okapi TF 가중치에 따른 나이브 베이즈(Naive Bayes), kNN(k nearest neighbor), 결정트리(Decision tree) 분류기의 성능비교 실험을 하였다. 그 결과, 나이브 베이즈가 가장 좋은 성능을 보였으며, 단순 TF 가중치와 TF-IDF 가중치는 나이브 베이즈, kNN, 결정트리 분류기에서 동일한 성능을 보였으나, Okapi TF 가중치의 경우 나이브 베이즈에서 가장 좋은 성능을 보였다.

  • PDF

Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR (나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF

Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR (나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어 모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF

Comparative Between Naive Bayes Classifier and Cosine Similarity Coefficient in Dynamic Document Filtering (동적인 문서 여과에서 나이브 베이즈 분류기와 코사인 유사 계수의 성능 비교)

  • Son Ki-Jun;Lim Soo-Yeoun;Park Seong-Bae;Lee Sang-Jo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.214-216
    • /
    • 2006
  • 온라인 정보가 증가함에 따라 많은 양의 정보 중에서 사용자가 원하는 정보를 정확하고 신속하게 찾아 주는 문서 여과의 중요성 또한 증가하고 있는 추세이다. 본 논문은 문서 여과 문제를 이진 문서 분류 문제로 보고, 나이브 베이즈 분류기를 동적인 문서 여과 목적으로 사용하였다. 이때 사용자가 자신의 관심 분야에 해당하는 주제를 제대로 여과 받기 위해서 학습 대상으로 삼아야 할 학습문서의 범위와 관련성 있는 문서를 제대로 여과 받기 위해서 체크해야 하는 관련성 표기 비율에 따른 분류기의 성능에 대하여 실험을 하였다. 코사인 유사계수를 이용한 여과 방법과의 성능도 비교 실험하였다. 실험 결과 나이브 베이즈 이진 분류기는 문서집합의 크기가 일정한 정도일 때 관련성 있는 문서가 모두 표기되지 않더라도 여과에는 큰 영향을 미치지 않음을 볼 수 있었다.

  • PDF

A Comparison Study on the Application Method of Naive Bayes for Text Classification (텍스트 분류의 성능 향상을 위한 나이브 베이즈 응용 기법 비교 연구)

  • Heo, Jae-Hee;Park, Eun-Young;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.734-736
    • /
    • 2015
  • 텍스트를 분류해내는 일이 점점 중요해지고 있는 현 시점에서 기계학습은 다른 기법들보다도 가장 효과적인 성능을 드러낸다. 그 중에서도 특히 나이브 베이즈 분류기는 간절하고 효율적으로 알려진 기계학습 모델 중에 하나이다. 본 논문은 보다 효과적인 텍스트 분류를 위해 나이브 베이즈의 기법들을 응용 및 개선하고자 한 기존의 연구들을 소개하고, 이를 분석하고자 한다.

Development of Incident Detection Algorithm Using Naive Bayes Classification (나이브 베이즈 분류기를 이용한 돌발상황 검지 알고리즘 개발)

  • Kang, Sunggwan;Kwon, Bongkyung;Kwon, Cheolwoo;Park, Sangmin;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.25-39
    • /
    • 2018
  • The purpose of this study is to develop an efficient incident detection algorithm by applying machine learning, which is being widely used in the transport sector. As a first step, network of the target site was constructed with micro-simulation model. Secondly, data has been collected under various incident scenarios produced with combination of variables that are expected to affect the incident situation. And, detection results from both McMaster algorithm, a well known incident detection algorithm, and the Naive Bayes algorithm, developed in this study, were compared. As a result of comparison, Naive Bayes algorithm showed less negative effect and better detect rate (DR) than the McMaster algorithm. However, as DR increases, so did false alarm rate (FAR). Also, while McMaster algorithm detected in four cycles, Naive Bayes algorithm determine the situation with just one cycle, which increases DR but also seems to have increased FAR. Consequently it has been identified that the Naive Bayes algorithm has a great potential in traffic incident detection.

Comparison of Automatic Score Range Prediction of Korean Essays Using KoBERT, Naive Bayes & Logistic Regression (KoBERT, 나이브 베이즈, 로지스틱 회귀의 한국어 쓰기 답안지 점수 구간 예측 성능 비교)

  • Cho, Heeryon;Im, Hyeonyeol;Cha, Junwoo;Yi, Yumi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.501-504
    • /
    • 2021
  • 한국어 심층학습 언어모델인 KoBERT와, 확률적 기계학습 분류기인 나이브 베이즈와 로지스틱 회귀를 이용하여 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 실험을 진행하였다. 네가지 주제('직업', '행복', '경제', '성공')를 다룬 답안지와 점수 레이블(A, B, C, D)로 쌍을 이룬 학습데이터 총 304건으로 다양한 자동분류 모델을 구축하여 7-겹 교차검증을 시행한 결과 KoBERT가 나이브 베이즈나 로지스틱 회귀보다 약간 우세한 성능을 보였다.

Improving Accuracy of Multi-label Naive Bayes Classifier (다중 레이블 나이브 베이지안 분류기의 정확도 개선 연구)

  • Kim, Hae-Choen;Lee, Jae-Sung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.147-148
    • /
    • 2018
  • 다중 레이블 분류 문제는 다중 레이블 데이터를 입력받았을 때 연관된 다수의 레이블을 추측하는 문제이다. 본 논문에서는 다중 레이블 분류 문제의 기법 중 하나인 나이브 베이지안 분류기에 레이블 의존성을 계산하여 결과에 반영한 결과 다중 레이블 분류 문제의 성능이 개선됨을 확인하였다.

  • PDF