• Title/Summary/Keyword: 나노 하이드록시아파타이트

Search Result 11, Processing Time 0.026 seconds

Fabrication and Microstructure of Hydroxyapatite Coating Layer by Plasma Spraying (플라즈마 용사법에 의한 Hydroxyapatite코팅층의 제조와 미세구조)

  • 이치우;오익현;이형근;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.259-265
    • /
    • 2004
  • The microstructure of nano-sized hydroxyapatite (HAp) powders coating layer on ZrO$_2$ substrate was investigated, which was formed by plasma spray process. The nano-sized HAp powders were successfully synthesized by precipitation of Ca(NO$_3$)$_2$$.$4H$_2$O and (NH$_4$)$_2$HPO$_4$ solution. The HAp coating layer with thickness of 150∼250 $\mu\textrm{m}$ was free from the cracks at interfaces between the coating and ZrO$_2$ substrate. In the plasma sprayed HAp coating layer, the undesirable phases were not found, while in the HAp coating layer heat-treated at 800$^{\circ}C$, TTCP, and ${\beta}$-TCP phase were detected as well as HAp phase. However, at 900$^{\circ}C$, they were completely disappeared. At 1100$^{\circ}C$, XRD analysis revealed that the coating layer was composed of the highly crystallized HAp.

The Optimum Addition Ratio of Nano Hydroxyapatite to Glass Ionomer Dental Cement (Changes in Demineralization Resistance and Bonding Strength of Light Cured Glass Ionomer after the Addition of Nano Hydroxyapatite in Various Ratio) (글래스아이오노머에 대한 나노 하이드록시아파타이트의 최적 첨가 비율(나노 하이드록시아파타이트의 첨가 비율에 따른광중합형 글래스아이오노머의 결합강도와 탈회저항성의 변화 비교))

  • Kim, Nam Hyuk;Kim, Seong Oh;Song, Je Seon;Lee, Jae Ho;Son, Heung Kyu;Choi, Byung Jai;Choi, Hyung Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.3
    • /
    • pp.159-167
    • /
    • 2013
  • The aim of this study was to evaluate changes in demineralization resistance and bonding strength of light cured glass ionomer after the addition of nano hydroxyapatite in various ratios. Fuji II LC GIC (GC Co., Japan) was used as the control group and also as a base material for experimental group. HA was mixed into the RMGIC at various ratio to create a HA-LC GIC mixture, preparing six experimental groups, i.e. 5%, 10%, 15%, 20%, 25%, 30% HA-LC GIC. According to the results, the bonding strength increased due to the addition of HA, showing the maximum value at the 15% nano HA group (p < 0.05). Under CLSM observation after 4 days of demineralization, the HA groups were more resistant to demineralization compared to the control group. No significant difference was observed between HA groups. In analysis through SEM, the HA groups showed attachment of granular materials and decreased demineralized tooth surfaces under influence of HA particles.

THE EFFECTS OF NANO-SIZED HYDROXYAPATITE ON DEMINERALIZATION RESISTANCE AND BONDING STRENGTH IN LIGHT-CURED GLASS IONOMER DENTAL CEMENT (광중합형 글라스아이오노머 시멘트의 탈회 저항성과 결합 강도에 대한 나노미터 입자의 하이드록시아파타이트의 효과)

  • Kim, Ji-Hee;Lee, Yong-Keun;Kim, Seong-Oh;Song, Je-Seon;Choi, Byung-Jai;Choi, Hyung-Jun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.1
    • /
    • pp.24-34
    • /
    • 2010
  • The aim of this study was to evaluate the effect of incorporated nano HA on the demineralization resistance and bonding strength of LC GIC in comparison with micro HA. Fuji II LC GIC was used as the control group and a base material for experimental groups. Two experimental groups were prepared. One was prepared by adding 15% micro HA to LC GIC by weight ratio (Exp. 1), and the other was prepared by adding 15% nano HA instead (Exp. 2). According to the results, the following conclusions could be obtained. 1. Observing under the CLSM, the control group showed thicker enamel demineralization layer than in the experimental groups, and the Exp. 2 group showed the thinnest demineralization layer. 2. In SEM analysis, there was greater enamel demineralization in the control group. The Exp. 2 group was more resistant to demineralization compared to the Exp. 1 group. 3. The bonding strength was found to be in the increasing order of control, Exp. 1, and Exp. 2 group (p < 0.05). 4. Observing the fractured surfaces under SEM after the bonding strength test was performed, there were bone-like apatite particles formed in HA-added experimental groups, and a greater number of bone-like apatite particles were formed in the Exp. 2 group compared to the Exp. 1 group.

Preparation of electrostatic spray pyrolysis derived nano powder and hydroxyapatite forming ability (정전분무 열분해법에 의한 나노분말의 제조 및 하이드록시 아파타이트 형성능력 평가)

  • Lee, Young-Hwan;Jeon, Kyung-Ok;Jeon, Young-Sun;Lee, Ji-Chang;Hwang, Kyu-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.244-249
    • /
    • 2006
  • Electrostatic spray pyrolysis, a novel fabrication technique, has been used in this study to prepare calcium phosphate nano powders. Final annealing was done at $400^{\circ}C$ for 30min in air. The hydroxyapatite - forming ability of the annealed powder has been evaluated in Eagle's minimum essential medium solution (MEM). X-ray diffraction analysis, field emission - scanning electron microscope, energy dispersive X-ray spectroscope, and Fourier transform infrared spectroscope were used to characterized the annealed powders after immersion in MEM. The powder with an amorphous structure induced hydroxyapatite formation on their surfaces after immersion fer 15 days.

Study of Ag-Doped Bioactive Ceramic Composites (은이 첨가된 생체 활성 세라믹 복합체 연구)

  • Nam, Ki-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.761-764
    • /
    • 2009
  • Ag-Doped bioactive ceramic composites were prepared by colloidal silver solution. The physical properties of colloidal silver solution and Ag-Doped bioactive ceramic composites were characterized by Scanning electron microscopy(SEM), X-Ray Diffractometer(XRD) and Raman spectrophotometer respectively. According to XRD, we have identified that the chloride ion was chemically attached silver nano particles. SEM studies showed that silver chloride phases were homogeneously distributed on the Ag-Doped bioactive ceramic composites surface. Finally, we concluded that the silver chloride phase on the Ag-Doped bioactive ceramic composites surface was strongly prevent formation of Ag-hydroxyapatite.

Microstructures of HAp and HAp-Ag Composite Coating Layer Prepared by RS Magnetron Sputtering (RE Magnetron Sputtering에 의해 제조된 HAp와 HAp-Ag복합코팅층의 미세조직)

  • Lee, Hee-Jung;Oh, Ik-Hyun;Park, Sang-Shik;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • Hydroxyapatite (HAp) and HAp-Ag composite layers were coated on ZrO$_2$and Si wafer substrates by RF magnetron sputtering technique. The thickness of coating layers was in the range of 0.7∼1.0$\mu\textrm{m}$ and its roughness was 3∼4nm. The heat treated HAp coating layers were composed with nano-sized crystallines. However, the HAp-Ag composite layers showed the mixed structure with crystalline and amorphous phases. The Ca/P ratio of the as-received HAp coating layer was 1.9, but, the value was decreased as the Ag content with increased. Also, the Vickers hardness of HAp coating layer decreased as the Ag content increase.

Synthesis and Characterization of Amorphous Calcium Phosphate Nanoparticles (비정질 칼슘 포스페이트 나노 입자의 합성과 특성)

  • Han, Ji-Hoon;Chung, Sungwook
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.740-745
    • /
    • 2018
  • The synthesis and characterization of amorphous calcium phosphate (ACP) nanoparticles were reported in this work. We show that relatively monodisperse ACP nanoparticles with a size of sub-100 nm can be prepared by a hydrothermal reaction of calcium chloride ($CaCl_2$) and disodium adenosine triphosphate ($Na_2ATP$) in the presence of sodium phytate as an additive. Their compositions and structures were confirmed using a series of material characterization techniques. Our results exhibit that ACP nanoparticles synthesized using sodium phytate enhanced the stability of maintaining their amorphous nature and prevented from a conversion to crystalline hydroxyapatite (HAP). ACP nanoparticles with the improved stability have potential uses in biomaterial applications in regenerative medicine.

Effects of conditions for anodization and cyclic precalcification treatments on surface characteristics and bioactivity (양극산화와 석회화 순환처리 조건이 타이타늄 박판의 표면특성 및 생체활성에 미치는 영향)

  • Jang, Yong-Seok;Lee, Kang-Gyu;Jeon, Woo-Yong;Han, A-Lum;Lim, Chung-Ha;Lee, Min-Ho;Bae, Tae-Sung
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.243-256
    • /
    • 2018
  • The purpose of this study was to investigate the effects of the anodization and cyclic calcification treatment on the surface characteristic and bioactivity of the titanium thin sheet in order to obtain basic data for the production of bioactive titanium membrane. A $30{\times}20{\times}0.08mm$ titanium sheets were prepared, and then they were pickled for 10 seconds in the solution which was mixed with $HNO_3:HF:H_2O$ in a ratio of 12: 7: 81. The $TiO_2$ nanotube layer was formed to increase the specific surface area of the titanium, and then the cyclic calcification treatment was performed to induce precipitation of hydroxiapatite by improvement of the bioactivity. The corrosion resistance test, wettability test and immersion test in simulated body solution were conducted to investigate the effect of these surface treatments. The nanotubes formed by the anodization treatment have a dense structure in which small diameter tubes are formed between relatively large diameter tubes, and their inside was hollow and the outer walls were coupled to each other. The hydroxyapatite precipitates were well combined on the nanotubes by the penetration into the nanotube layer by successive cyclic calcification treatment, and the precipitation of hydroxyapatite tended to increase proportionally after immersion in simulated body solution as the number of cycles increased. In conclusion, it was confirmed that induction of precipitation of hydroxyapatite by cyclic calcification treatment after forming the nanotube $TiO_2$ nanotube layer on the surface of the titanium membrane can contribute to improvement of bioactivity.

인공치아와 표면처리

  • Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.121-121
    • /
    • 2016
  • 치아는 인체중에서도 혹한 환경에서 부분으로 높은 하중과 타액과 같은 강 부식성 매체로 그 환경이 상상을 초월한다. 즉 반복적으로 가해지는 하중(응력)과 침식을 유발하는 타액과 음식물 등이다. 따라서 치아가 쉽게 파괴되거나 썩는 현상이 나타나게 된다. 이렇게 사용되다가 치아의 역할을 다하게 되면 인공치아를 사용하게 되는데 그 재료가 바로 타이타늄(Ti)이다. 생체매식재로 사용되는 Ti는 반응성이 높아 산소와 쉽게 결합하여 표면에 TiO, $TiO_2$, 및 $Ti_2O_3$와 같은 산화피막을 표면에 형성함으로써 뛰어난 부식저항성과 생체적합성을 가지며 생체에 독성이 없고 탄성계수가 골과 비슷하여 골과 임플란트 경계면에서 응력분산에 유리한 성질 등 물리적, 기계적 성질이 뛰어나 외과용 임플란트 재료로 가장 좋은 재료이다. 금속 임플란트의 생체적합도는 임플란트 재료 자체보다는 생체 내 산화막이 화학적으로 불안정할 때 부식이 발생하게 되고 그 결과 금속이온이 주위로 유리되어 조직반응을 일으키므로 금속의 표면을 덮고 있는 산화막에 의해 좌우된다. Ti는 생체불활성재료로서 매식재료로 사용할 경우 뼈와 잘 융합되는 골유착을 나타내나 골과 화학적결합은 하지 않고 골형성을 적극적으로 유도하지 못함으로 환자의 치유기간이 길어지게 된다. 이러한 이유로 골조직내 임플란트의 접합을 개선하기위한 연구가 이루어져 골과의 결합을 높이기 위해 골유착을 일으키는 Ti에 골성장을 유도하는 뼈성분인 하이드록시 아파타이트(HA)라는 물질을 플라즈마 코팅법을 사용하던가 아니면 Hanks' solution내에서 침적 후 HA도금을 하는 방법 등으로 처리하고 있다. 그러나 플라즈마 코팅법은 고온에서 처리를 행하고 Hanks' solution내에 침적할 경우 Ti표면에 밀착도가 저하되거나 합금의 상변화 등으로 인하여 표면처리 과정 중에서 내식성이 크게 감소될 수 있다. 이러한 여러 가지 코팅법을 통하여 골 유착을 증진시키기 위한 연구는 계속되고 있지만 임상적으로 사용 후 문제가 단시일에 발생되는 것도 아니고 수년이 지나야 나타나게 된다. 이러한 방법으로 코팅을 하게 되면 골과 잘 유착이 되어 자연차아와 같은 기능을 하게 된다. 따라서 이러한 문제를 최소화하는 방법이 나노구조를 표면에 형성시켜 골유착을 쉽게 함으로써 이를 개선할 수 있을 것으로 생각되어 본 강의에서는 임플란트의 문제와 사용되는 재료에 대하여 고찰하여 자연치아를 대체 할 수 있는지 알아보았다.

  • PDF