• Title/Summary/Keyword: 나노 패터닝

Search Result 170, Processing Time 0.034 seconds

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

Micro Patterning Using Near-Field Coupled Nano Probe Laser Photo Patterning Of Chloromethylated Polyimide Thin Film (클로로메틸 폴리이미드(CMPI) 박막과 근접장 나노 프로브 레이저 패터닝을 이용한 미세 형상 가공 기술)

  • 최무진;장원석;김재구;조성학;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.369-372
    • /
    • 2004
  • Photo-induced surface alignment is charming as a non-contact photo-patternable alignment technology which can be used in the next generation of displays, such as large area, multi-domain. For decades, many polymer film have been investigated and developed to be used in the photo alignment. Among these photoreactive materials, recently developed polyimide, Chloromethylated Polyimide(CMPI) now became the focus of interests in this area because of its high photosensitivity and superior thermal stability. In this report, we present micro patterning method to form the nanoscale structure by Mask-Less laser patterning using this CMPI film and NSOM probe.

  • PDF

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.