• Title/Summary/Keyword: 나노 실리카 입자

Search Result 179, Processing Time 0.025 seconds

A Synthesis of Iron Oxide Based and Gadolinium Oxide Based Radiosensitizer for the Therapeutic Enhancement of Proton Beam Cancer (양성자 빔 암치료효과 개선을 위한 산화철 및 산화가돌리늄 나노입자 기반의 방사선증감제 합성)

  • Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.325-332
    • /
    • 2014
  • Metallic nanoparticles have attractive properties in biomedical applications such as diagnostics and therapeutics. Cross linked dextran coated iron oxide nanoparticles (SPIONs) and silica coated gadolinium oxide nanoparticles (SPGONs) have been synthesized as a radiosensitizer in the proton beam cancer therapy. The dextran and silicaused for the protective moieties on the SPIONs and SPGONs respectively. Size distributions of synthesized nanoparticles were confirmed 3~5 nm for SPIONs and 30~100 nm for SPGONs by transmission electron microscope (TEM). Cell survival fraction measurement and Western blot assay were performed to evaluate the radiosensitization effects of synthesized radiosensitizer. The calculated radiosensitization of SPIONs and SPGONs at 90 % cell death from the measured cell survival curves were 1.23 and 1.03 respectively. Western blotting results also show the same consistent results that the amount of released cytochrome c from mitochondria was considerably increased for the cancer cells taken up SPIONs.

Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device (나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과)

  • Lee, Donghyun;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2009
  • When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to $118^{\circ}C$ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to $120^{\circ}C$ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.

Investigation of Mechanical and Electrical Properties of Hybrid Composites Reinforced with Carbon Nanotubes and Micrometer-Sized Silica Particles (탄소나노튜브 및 실리카 입자로 강화된 하이브리드 복합재료의 기계적, 전기적 물성에 관한 연구)

  • Oh, Yun;You, Byeong Il;Ahn, Ji Ho;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1037-1046
    • /
    • 2016
  • In this study, to enhance the electrical insulation of composite specimens in addition to the improved mechanical properties, the epoxy composite were reinforced with carbon nanotubes and silica particles. Tensile strength, Young's modulus, dynamic mechanical behavior, and electrical resistivity of the specimens were measured with varied contents of the two fillers. The mechanical and electrical properties were discussed, and the experimental results related to the mechanical properties of the specimens were compared with those from several micromechanics models. The hybrid composites specimens with 0.6 wt% of carbon nanotubes and 50 wt% of silica particles showed improved mechanical properties, with increase in tensile strength and Young's modulus up to 11% and 35%, respectively, with respect to those of the baseline specimen. The electrical conductivity of the composite specimens with carbon nanotubes filler also improved. Further, the electrical insulation of the hybrid composites specimens with the two fillers improved in addition to the improvement in mechanical properties.

A Study on the Elastoplastic Behavior and Yield Surface of Polymer Nanocomposites by Molecular Dynamics Simulations (분자동역학 전산모사를 이용한 나노입자 복합재의 탄소성 거동과 항복 예측에 관한 연구)

  • Yang, Seung-Hwa;Yu, Su-Young;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.558-561
    • /
    • 2010
  • 본 연구에서는 나노복합재의 탄소성 거동과 항복응력을 예측하기 위해 분자동역학 전산모사를 수행하였다. 나일론 기지와 실리카 나노입자가 포함된 단위 셀 구조로부터 나노입자의 체적분율 변화에 따른 응력-변형률 선도를 등변형률을 적용한 등온등압 앙상블 전산모사로부터 도출하였다. 4%의 변형률 범위에서 나노복합재의 탄성계수를 도출하였고, 이를 이용하여 2% 오프셋 방법으로 항복응력을 예측하였다. 나노입자의 유무에 따른 항복평면의 변화와 고분자 재료에서 나타나는 정수압 효과가 항복평면에 미치는 영향을 확인하기 위해 일축 인장/압축 그리고 이축 인장/압축을 수행하였고, 각각의 경우에 나타나는 나노복합재 내부의 자유체적 변화에 대한 분석을 통해 나노입자의 강화효과를 고찰하였다. 또한 고분자 기지로 인해 발생하는 정수압 효과를 반영한 von-Miss 항복평면을 도출하고, 입자의 체적분율 변화에 따른 항복응력의 예측이 가능하도록 정수압효과에 대한 파라메터를 체적분율의 함수로 근사하였다.

  • PDF

Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Metal Nanoparticles (금속 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성)

  • Kim, Ji-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.225-226
    • /
    • 2012
  • 전기방사법으로 형성한 마이크로 크기의 실리카($SiO_2$) 코팅층 위에 광환원법(photo-reduction mothod)를 이용하여 나노 크기의 금속 나노입자를 형성하여 마이크로-나노 계층구조(hierarchical structure)의 코팅층을 형성하였다. 자외선(UV선) 조사강도 및 조사시간의 변화에 따른 미세구조 및 표면 평활도지수(roughness factor) 변화 거동을 관찰하였고, 이 코팅층에 불소화 처리를 하여 초소수성 표면을 형성하였다.

  • PDF

Preparation and characterization of CdS nanoparticle on the surface of silica nanoparticles (실리카 나노입자 표면에 CdS 나노입자의 제조 및 평가)

  • Kang, Yun-Ok;Choi, Seong-Ho;Gopalan, A.;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.413-418
    • /
    • 2007
  • Poly(vinylpyrrolidone) stabilized cadmium sulfide (CdS) nanoparticles were loaded onto the surface of silica ($SiO_2$) nanoparticles by using ${\gamma}$-irradiation. TEM micrograph reveals the presence of ~20nm sized CdS nanoparticles on the surface of $SiO_2$ nanoparticles. XRD patterns confirm the crystalline. PL spectra of the simple PVP-stabilized CdS nanoparticle and $SiO_2$@CdS composite confirm the differences in the emission characteristics between them. Two prominent emission peaks were noted around 550 nm and 600 nm for PVP-stabilized CdS nanoparticles). The emission peaks noted for the PVP-stabilized CdS nanoparticles were found to be blue shifted for $SiO_2$@CdS composites. Besides, an additional emission peak around 450 nm was noticed for the $SiO_2$@CdS composite. The presence of CdS nanoparticles influence the emission characteristics and induce quantum confinement effect.

Synthesis of Polymeric Dental Restorative Composite Filled with Hydrophobic Silica Nanoparticle (소수성의 실리카 나노입자가 충진된 치아수복용 고분자 복합체 제조)

  • Han, Sanghyuk;Seo, Kitaek;Ma, Seung Jae;Lim, Sang Myung;Kim, Ohyoung
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.403-408
    • /
    • 2006
  • To enhance the dental properties of polymeric dental restorative composite activated by visible-light, the surface of hydrophilic silica nanoparticle was hydrophobically treated using $\gamma$-methacryloxypropyltrimethoxysilane ($\gamma$-MPS) coupling agent. Structural properties and dispersity of silica in the composite was compared with the hydrophobicity of silica. Polymerization characteristic of the composite was also evaluated. Degree of hydrophobicity of silica nanoparticle was considerably improved with an increase of $\gamma$-MPS upto 40 wt% and converged asymptotically. Additionally, with an increase of the hydrophobicity of silica nanoparticle, the dispersity of silica was improved and the residual monomer in the composite was not detected from nuclear magnetic resonance experiment which indicated superior polymerization behavior.

Characterization of Modified Chloroprene Rubber by Nanosilica as a Primer (Modified Chloroprene Rubber를 이용한 Primer 제조 및 특성평가)

  • Lim, Gyeong Eun;Jeong, Boo Young;Cheon, Jung Mi;Choi, Min Ji;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2018
  • Water In this study, CR/silica nanocomposites were produced by dispersing nanosilica on chloroprene rubber (CR) to apply toluene-free primers for mobile devices. The properties of the modified chloroprene rubber using nanosilica was evaluated through FT-IR, SEM, EDS, Contact angle. The SEM images indicated that P-4 (4 phr) was the most homogenously dispersed. Pencil hardness measurements and Contact angle indicated that the hardness of the CR/silica nanocomposite and the hydrophobicity increased with increase in the silica content. The peel strength of P-4 (4phr) was the highest and the initial peel strength of P-4 sample (2.9 kgf/inch) was 50% higher than that of the P-0 sample.

Synthesis and Oil Adsorption Application of Silica Nanopowder from Sulfuric Acid and Sodium Silicate Precursors Using Taylor-vortex Reactor (테일러 와류 반응기를 활용한 황산-물유리 전구체로부터의 실리카 나노 분말의 합성 및 흡유제 응용)

  • Jea-Hun Chung;Yea-Young Lee;Quang-Hai Tran;Minjun Lee;Young-Sang Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.4
    • /
    • pp.344-354
    • /
    • 2024
  • Silica nanoparticles were synthesized by precipitation method using a Taylor vortex reactor from sulfuric acid and water glass as precursor materials. The effects of factors controlling the average particle size of the nanopowders, such as stirring speed and concentration of water glass, were derived from the experimental data, and the differences in average particle size and standard deviation were compared with those of a conventional reactor. It was found that the Taylor vortex reactor can be used to synthesize silica powder with a relatively uniform particle size. Utilizing MTCS, a silane coupling agent, the silica particles were modified to be hydrophobic by replacing the hydroxyl groups on the silica surface with methyl groups, and the surface modification conditions affecting the amount of oil absorption per unit mass of the hydrophobic powder were derived. Particles absorbing 3.14 times more oil per gram of silica powder were prepared, and are expected to be useful in the removal of contaminants.

Pure inorganic scratch resistive layer on the titanium and the stainless steel surfaces by a sol-gel coating method (졸-겔 코팅법에 의한 티타늄과 스테인리스표면위의 무기질 내스크래치 보호막)

  • Kim, Ho-Hyeong;Kim, Gyun-Tak;Lee, Heung-Ryeol;Hwang, Tae-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.198-199
    • /
    • 2009
  • 티타늄과 스테인리스 기판위에 졸-겔 코팅법으로 무기질 보호막을 형성하였고 기계적 특성을 테스트 하였다. 무기질 보호막은 금속 표면위에 졸-겔 코팅용액을 스프레이 코팅하여 제작하였다. 티타늄과 스테인리스 기판위에 적용한 무기질 보호막은 현저한 내스크래치성 향상을 보였다. 또한 실리카 나노입자의 첨가에 따른 무기질 보호막의 경도 향상을 보였다. 그러나 실리카 나노입자가 2 wt% 이상 첨가됨에 따라 보호막의 경도가 감소함을 알 수 있었다.

  • PDF