• Title/Summary/Keyword: 나노 소재

Search Result 1,070, Processing Time 0.031 seconds

Organic-Inorganic Hybrid Materials Technology for Gas Barrier (가스 차단을 위한 유.무기 하이브리드 소재기술)

  • Kim, Ki-Seok;Pa가, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.112-117
    • /
    • 2011
  • Recently, high growth potential of barrier materials industry including high performance packing materials was expected with increasing the national income and well-being culture. As high barrier materials, polymer nanocomposites have considerable attractions due to their excellent physical properties compared to conventional composite materials. In general, polymer nanocomposites were consisted of polymer matrix and inorganic fillers, such as layered silicate, carbon nanotubes, and metal- or inorganic nanoparticles. Among these materials, layered silicate which was called as the clay was usually used as nano-fillers because of naturally abundant and most economical and structural properties. Clay-reinforced polymer nanocomposites have various advantages, such as high strength, flammability, gas barrier property, abrasion resistance, and low shrinkage and used for automotive and packing materials. Therefore, in this paper, we focused on the need of gas barrier materials and materials-related technologies.

Development and Application of Metal Nanoparticles for Printed Electronics: Application to Metal Ink in Ink-Jet Technology (Printed Electronics용 금속 나노입자 개발 및 응용: 잉크젯용 금속잉크에의 적용)

  • Lee, Kun-Jae;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • 최근프린팅기술은 전자부품소재 산업의 대형화 및 저가격화의 해법으로 기대되고 있다. 특히 전자부품소재 프린팅 기술 중 잉크젯공정은 최신 디스플레이용 전극소재, PCB, FPCB 및 기타 소재공정에 이용하려는 움직임이 활발히 진행되고 있다. 그러나 잉크젯 기술은 재료의존도 비중이 높은 기술로서 소재(금속잉크)의 개발이 최우선시 되어야한다. 전자부품소재용 금속잉크에 사용되는 금속 나노입자는 우수한 전기전도성과 산업적응용이 가능해야 한다. 따라서 최근 연구되고 있는 금속 나노입자의 연구결과 중 전자잉크에 적용 가능한 연구결과와 응용분야에 대하여 서술하였다.

Synthesis of the nanostructured powder for thermal spray coating (나노 용사용 분말 제조에 관한 연구)

  • 하국현;이구현
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.50-50
    • /
    • 2003
  • 용사 공정은 소재의 표면 특성을 개질하기 위한 가장 효과적인 공정의 하나로서, 최근 항공기용 엔진 부품을 포함하여 자동차, 및 각종 산업 분야에 폭 넓게 사용되고 있으나, 산업 환경의 고도화로 용사 코팅층의 다양한 분야에서의 고특성화가 요구되고 있다. 소재의 나노화는 이러 한 소재의 고 특성화 요구에 부응할 수 있는 새로운 기술로서, 현재 많은 분야에서 응용이 진행되고 있다. 특히 최근에는 나노기술을 용사 공정에 응용하기 위한 시도가 진행되고 있으나, 나노 분말 제조 기술이 아직 확립되어 있지 않고, 또한 나노 분말을 용사 공정에 응용하기 위한 기술의 부족으로 나노 용사공정에의 적용은 제한을 받고 있다. 이를 위해서는 나노분말 제조 기술의 개발이 이루어져야하고, 나노 분말 제조 기술과 용사 분말 제조 기술 그리고 용사 기술의 접목이 이루어 져야하는 어려움이 있다. 본 연구에서는 나노 용사용 분말을 제조하기 위 한 원료용 나노 분말을 화학적 공정에 의하여 제조 한 후, 이 분말의 유동도 및 밀도 제어를 위한 후 처리 공정을 개발하였다. 제조된 분말의 입자 크기는 약 150nm였으며, 용사 분말 제조후 분말의 겉보기 겉보기 밀도가 3.8g/cc로서 일반 용사용 분말에 비하여 우수하였다.

  • PDF

하향식 마이크로 제조공정과 상향식 자가조립을 이용한 나노소재 박막 디바이스 구현

  • Lee, Dong-Jin;Go, Seung-Hwan
    • Journal of the KSME
    • /
    • v.52 no.6
    • /
    • pp.48-51
    • /
    • 2012
  • 이 글에서는 하향식 마이크로 제조공정을 이용하여 디바이스 플랫폼을 만들고 상향식 자가조립으로 나노소재 박막을 만드는 공정을 소개하고, 나노소재 박막의 선택적 패터닝을 통해 디바이스를 구현한 연구에 대해 소개하고자 한다.

  • PDF

차세대 나노 박막 다원계 모물질 설계, 합성 기술

  • Mun, Gyeong-Il;Sin, Seung-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.121-121
    • /
    • 2012
  • 산업이 고도화, 다원화, 세계화되고 있는 현대사회는 다기능성, 고물성, 극한 내구성을 가지며 환경 친화적이면서 에너지 효율을 극대화시킬 수 있는 다기능 소재의 개발을 요구하고 있다. 이러한 시점에서 다양한 물성을 동시에 발현이 가능한 코팅 소재는 향후 미래에 중요한 원천 소재로서 주목되고 있다. 특히, 환경에 의해 쉽게 물성 및 구조의 변화가 쉬운 종래의 코팅소재와는 달리, 다양한 외부환경에서도 미세 구조 및 물성을 안정적으로 유지할 수 있는 신개념의 코팅 소재의 개발이 절실히 요구되고 있다. 이를 위해서는 코팅소재의 다 성분화가 필수적이다. 최근의 코팅 기술은 2가지 이상의 물성, 특히 서로 상반되는 물성을 동시에 구현할 수 있는 소재의 개발을 요구하고 있다. 이러한 물성의 구현을 위하여 더 많은 성분으로 구성되며 더욱 복잡한 조직으로 구성된 코팅층에 대한 개발이 진행이 필요하다. 본 연구에서 목표로 하는 신 개념의 원천소재기술은 4성분계 이상의 원료 물질을 단일 타겟으로 제조하여, 단순한 공정으로서 단일 코팅층 내에 다양한 성분과 10 nm 미만 크기의 나노 결정립/나노 비정질로 구성된 나노 복합 구조의 형성이 가능하도록 하는 기술을 개발하고자 한다. 이를 통해 복합기능 3 이상의 다기능성 부여는 물론, 그림 1에 정리된 기존 코팅재에서 결여된 특성을 포함한 극한 기능성(광대역 윤활성, 전자 이동 제어에 의한 온도 저항 계수 및 전기 저항 조절, 고온 열적 안정성, 내산화성, 고열전도율, 초저마찰/내구성/초고경도성 등)의 구현이 가능한 복잡한 형태의 나노 복합 코팅층 소재 개발이 가능하도록 하는 기술이다. 또한 기존 코팅재의 구조적 결함을 통해 발생하는 내식성 문제를 방지할 수 있는 기술이다. 다성분계 모물질의 개발이 중요한 이유는 다수의 성분 원소를 합금 상태로 형성시킴으로서, 단일 소스에 의해 다양한 원소를 동시에 스퍼터링 및 증착이 가능하도록 할 수 있다는 장점을 가지기 때문이다. 특히, 타겟의 미세구조를 나노구조화 하는것을 통해, 스퍼터링 yield의 차이가 큰 원소일지라도 균일하게 증착시킬 수 있는 방법을 개발하고자한다. 또한 다수의 타겟을 이용하여 균일한 다성분 코팅층 형성하는 기존의 PVD 코팅방법으로는 다수의 성분타겟을 사용함으로서 장비의 복잡성, 코팅의 재현성, 대형화 등의 문제점을 본질적으로 갖고 있다. 이를 위한 해결방법으로 본 발표에서는 3가지 이상의 다기능성 구현을 위한 가장 중요한 원천기술이라 할 수 있는 다성분계 타겟 모물질 제조 기술의 개발 진행 사항에 대해 소개하고자 한다.

  • PDF

차세대 나노 박막 다원계 모물질 설계 및 저마찰 코팅층 형성 기술

  • Mun, Gyeong-Il;Lee, Jang-Hun;Seon, Ju-Hyeon;Sin, Seung-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.91-92
    • /
    • 2013
  • 산업이 고도화, 다원화, 세계화되고 있는 현대사회는 다기능성, 고물성, 극한 내구성을 가지며 환경 친화적이면서 에너지 효율을 극대화시킬 수 있는 다기능 소재의 개발을 요구하고 있다. 이러한 시점에서 다양한 물성을 동시에 발현이 가능한 코팅 소재는 향후 미래에 중요한 원천 소재로서 주목되고 있다. 특히, 환경에 의해 쉽게 물성 및 구조의 변화가 쉬운 종래의 코팅소재와는 달리, 다양한 외부환경에서도 미세 구조 및 물성을 안정적으로 유지할 수 있는 신개념의 코팅 소재의 개발이 절실히 요구되고 있다. 이를 위해서는 코팅소재의 다 성분화가 필수적이다. 최근의 코팅 기술은 2가지 이상의 물성, 특히 서로 상반되는 물성을 동시에 구현할 수 있는 소재의 개발을 요구하고 있다. 이러한 물성의 구현을 위하여 더 많은 성분으로 구성되며 더욱 복잡한 조직으로 구성된 코팅층에 대한 개발이 필요하다. 본 연구에서 목표로 하는 신 개념의 원천소재기술은 4성분계 이상의 원료 물질을 단일 타겟으로 제조하여, 단순한 코팅공정으로서 단일 코팅층 내에 다양한 성분상이 10 nm 미만 크기의 나노 결정립/나노 비정질로 구성된 나노 복합 구조로 형성되도록 하는 기술을 개발하고자 하는 것이다. 이는 복합기능 3 이상의 다기능성 부여는 물론, 그림 1에 명시되어 있는 극한 기능성(광대역 윤활성, 전자 이동 제어에 의한 온도 저항 계수 및 전기 저항 조절, 고온 열적 안정성, 내산화성, 고열전도율, 초저마찰/내구성/초고경도성 등)이 구현되도록 하는 소재 개발과 원하는 물성을 구현할 수 있는 나노 복합 코팅층의 형성 공정으로 구성된다. 다성분계 모물질의 개발이 중요한 이유는 다수의 성분 원소를 합금 상태로 형성시킴으로서, 단일 소스에 의해 다양한 원소를 동시에 스퍼터링 및 증착이 가능하도록 할 수 있다는 장점을 가지기 때문이다. 특히, 타겟의 미세구조를 나노구조화 하는것을 통해, 스퍼터링 yield의 차이가 큰 원소일지라도 균일하게 증착시킬 수 있는 방법을 제시하고자한다. 이러한 연구는 다수의 성분 타겟을 사용함으로서 장비의 복잡성, 코팅의 재현성, 대형화 등의 문제점을 본질적으로 갖고 있는 기존 PVD 공정의 문제점을 해결하기 위한 최적의 대안이라할 수 있다. 본 발표에서는 3가지 이상의 다기능성 구현을 위한 가장 중요한 원천기술이라 할 수 있는 다성분계 타겟 모물질 제조 기술과 제조된 모물질을 이용하여 제조된 저마찰 코팅층과 그 물성에 대해 소개하고자 한다.

  • PDF

Synthesis of multicomponent basic materials for the next generation nanocomposite coating (차세대 나노 박막 다원계 모물질 설계, 합성 기술)

  • Sin, Seung-Yong;Mun, Gyeong-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.501-501
    • /
    • 2011
  • 산업이 고도화, 다원화, 세계화되고 있는 현대사회는 다기능성, 고물성, 극한 내구성을 가지며 환경 친화적이면서 에너지 효율을 극대화시킬 수 있는 다기능 소재의 개발을 요구하고 있다. 이러한 시점에서 다양한 물성을 동시에 발현이 가능한 코팅 소재는 향후 미래에 중요한 원천소재로서 주목되고 있다. 특히, 환경에 의해 쉽게 물성 및 구조의 변화가 쉬운 종래의 코팅소재와는 달리, 다양한 외부환경에서도 미세 구조 및 물성을 안정적으로 유지할 수 있는 신개념의 코팅 소재의 개발이 절실히 요구되고 있다. 이를 위해서는 코팅소재의 다 성분화가 필수적이다. 최근의 코팅 기술은 2가지 이상의 물성, 특히 서로 상반되는 물성을 동시에 구현할 수 있는 소재의 개발을 요구하고 있다. 이러한 물성의 구현을 위하여 더 많은 성분으로 구성되며 더욱 복잡한 조직으로 구성된 코팅층에 대한 개발이 필요하다. 본 연구에서 목표로 하는 신 개념의 원천소재기술은 4 성분계 이상의 원료 물질을 단일 타겟으로 제조하여, 단순한 코팅공정으로서 단일 코팅층 내에 다양한 성분상이 10 nm 미만 크기의 나노 결정립/나노 비정질로 구성된 나노 복합 구조로 형성되도록 하는 기술을 개발하고자 하는 것이다. 이는 복합기능 3 이상의 다기능성 부여는 물론, 그림 1에 명시되어 있는 극한 기능성(광대역 윤활성, 전자 이동 제어에 의한 온도 저항 계수 및 전기 저항 조절, 고온 열적 안정성, 내산화성, 고열전도율, 초저마찰/내구성/초고경도성 등)이 구현되도록 하는 소재 개발과 원하는 물성을 구현할 수 있는 나노 복합 코팅층의 형성 공정으로 구성된다. 다성분계 모물질의 개발이 중요한 이유는 다수의 성분 원소를 합금 상태로 형성시킴으로서, 단일 소스에 의해 다양한 원소를 동시에 스퍼터링 및 증착이 가능하도록 할 수 있다는 장점을 가지기 때문이다. 특히, 타겟의 미세구조를 나노구조화 하는것을 통해, 스퍼터링 yield의 차이가 큰 원소일지라도 균일하게 증착시킬 수 있는 방법을 제시하고자한다. 이러한 연구는 다수의 성분 타겟을 사용함으로서 장비의 복잡성, 코팅의 재현성, 대형화 등의 문제점을 본질적으로 갖고 있는 기존 PVD 공정의 문제점을 해결하기 위한 최적의 대안이라할 수 있다. 본 발표에서는 3가지 이상의 다기능성 구현을 위한 가장 중요한 원천기술이라 할 수 있는 다성분계 타겟 모물질 제조 기술에 대해 소개하고자 한다.

  • PDF

ZnO 나노입자를 포함한 고분자 나노 복합 소재를 사용하여 제작한 WORM 메모리 소자 안정성

  • Son, Jeong-Min;Yun, Dong-Yeol;Jeong, Jae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.71-71
    • /
    • 2011
  • ZnO 반도체가 넓은 에너지띠와 큰 엑시톤 결합에너지를 가지기 때문에 가진 투명 전극, 태양전지, 발광소자 및 메모리와 같은 다양한 전자 및 광전자 소자의 응용에 대한 많은 연구가 활발히 진행되고 있다. 본 논문에서는 절연성 고분자인 폴리스티렌 박막에 분산되어 있는 ZnO 나노 입자를 기억 매체로 사용하는 write-once-read-many times (WORM) 메모리 소자를 제작하고 전기적 성질과 안정성에 대하여 관찰하였다. 화학적 방법으로 형성한 ZnO 나노입자와 폴리스티렌을 N,N-dimethylformamide 용매에 녹인 후 초음파 교반기를 사용하여 나노 복합 소재를 형성하였다. 하부 전극으로 indium-tin-oxide가 증착되어 있는 유리 기판 위에 나노 복합 소재를 스핀코팅 방법으로 도포한 후 열을 가해 잔류 용매를 제거하였다. ZnO 나노입자가 분산되어 있는 폴리스티렌 나노 복합 소재로 구성된 박막위에 상부 전극으로 Al을 열증착하여 메모리 소자를 제작하였다. 전류-전압 측정 결과에서 저전압에서는 전도도가 낮은 OFF 상태를 유지하다 약 1.5 V에서 전도도가 갑자기 증가하여 높은 전도도의 ON 상태로 전이되는 쌍안정성이 관찰되었다. 전류의 ON/OFF 비율은 약 103이며 ON 상태에서 OFF 상태로 전환되지 않는 전형적인 WORM 메모리 소자의 전류-전압 특성을 나타났다. 두 전극 사이에 폴리스티렌 박막으로만 제작된 소자를 제작하여 전류-전압 측정을 하였으나 메모리 특성이 나타나지 않았다. 그러므로 WORM 메모리 특성은 폴리스티렌 박막안의 ZnO 나노입자에 기인함을 알 수 있었다. 제작된 소자에 대해 기억 시간 측정 결과는 ON과 OFF 상태의 전류가 장시간에도 변화가 거의 없는 소자의 안정성을 보여주었다. 이 실험 결과는 ZnO 나노입자가 분산된 폴리스티렌 나노 복합 구조체를 사용하여 안정성을 가진 WORM 메모리 소자를 제작할 수 있음을 보여주고 있다.

  • PDF

단일 나노선의 열전물성 측정용 열전 MEMS 플랫폼 개발

  • Sin, Ho-Seon;Jeon, Seong-Gi;Lee, U;Yu, Jin;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.589-589
    • /
    • 2013
  • 열전재료는 제백효과(Seebeck effect)에 의해 폐열을 전기에너지로 변환시킬 수 있는 소재로서, 기존의 열전재료가 나노수준으로 크기가 줄어들 경우 양자제한효과에 의한 제백계수의 증가와 표면산란에 의한 열전도도 감소로 인해 벌크재료에 비해 높은 에너지변환효율을 가질 수 있을 것으로 기대되고 있다. 에너지 변환효율은 열전성능계수인 $ZT=S2{\sigma}T/k$로 정의되며 따라서 우수한 열전재료는 높은 제백계수 S와, 높은 전기전도도 ${\sigma}$ 및 낮은 열전도도 k를 갖는 재료여야 한다. 그러나 나노소재는 낮은 측정 신호와 측정소자준비가 어려워 기존 측정시스템으로는 원활한 측정이 어렵다. 특히 열전도도의 경우 나노소재 자체의 열전도 보다 나노소재 주변 구조에 의한 열전도가 큰 경우 정확한 열전도도 평가가 어렵다. 본 연구에서는 나노선의 열전물성을 평가하기 위해 MEMS기반 기술을 이용하여 열전물성 측정플랫폼(MEMS-based thermoelectric measurement platform, MTMP)을 개발하였다. 개발 된 MTMP는 얇은 Si nitride 브릿지들이 허공에 떠 있는 두 개의 아일랜드 형태의 멤브레인 구조를 지지하는 형태로 제작되었으며, 한 쪽 아일랜드구조 위에는 나노히터가 있어 두 아일랜드 구조 사이에 온도구배를 만들 수 있도록 제작되었다. 제작된 멤브레인을 이용하여 전기화학적인 방법으로 합성한 Bi-Te계 나노선의 S, ${\sigma}$ 그리고 k를 측정하였다. 측정결과 화학양론적 미세구조를 갖는 단결정 Bi2Te3 나노선은 300 K의 측정온도에서 $S=-57{\mu}V/K$, ${\sigma}=3.9{\times}10^5S/m$, k=2.0 W/m-K의 측정 값으로 ZT=0.19였다. 본 연구에서 개발한 MTMP는 나노선 뿐만 아니라 나노플레이트의 열전 측정에도 활용할 수 있는 구조로서 나노열전소재 측정에 널리 활용될 수 있다.

  • PDF

나노질화 처리를 통한 사출금형 특성 연구

  • Sin, Hong-Cheol;Lee, Gyeong-Hwang;Kim, Dae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.105-105
    • /
    • 2010
  • 자동차 차체부품에 적용되는 플라스틱 소재는 강도와 내마모성, 내충격성의 충분한 물성확보가 필요하며, 이에 플라스틱 소재의 기계적 특성 향상을 위해 유리 섬유가 다량 함유된 복합소재적용이 증가하고 있다. 반면 플라스틱이 고강도화함에 따라 제품 성형을 위한 사출 금형을 손상시키는 사례가 빈번하게 발생하고, 소재의 유동성 저하에 따른 사출 불량이 증가하고 있어 고강성 플라스틱 복합소재에 대응하는 고경도, 고내마모 특성이 부여된 사출 금형의 개발이 시급한 실정이다. 특히 사출 금형에 사용되는 소재는 기존 소재에 비해 우수한 내마모성과 함께 고광택을 유지하는 것이 더욱 중요해졌으며, 이에 따라 유럽, 일본과 국내 연구진에 의해 다양한 연구가 진행되고 있다. 그 중에서도 일본에서 개발되어 국내에도 소개된 래디칼 질화는 기존 질화법에 표면의 화합물 층만을 제어하는 것으로 다소의 표면 광택 효과는 있으나, 플라스틱 사출에 그대로 적용하기에는 무리가 따르므로 그 용도가 극히 제한적이다. 본 연구에서 적용한 나노 질화기술은 0.1torr 이하의 고진공에서 고밀도의 플라즈마 에너지를 발생시키는 방법으로 화합물층이 없는 나노 크기의 질화층을 소재 표면에 형성시키는 기술로서, 처리 후에도 표면의 색상 및 광택의 변화가 없는 것을 특징으로 한다. 또한 표면 경도 및 피로 특성을 향상시킴으로써 금형의 내구 수명을 향상시킬 것으로 기대된다. 본 연구에서는 KP4 금형 소재를 사용하여 플라즈마 이온 질화 시험 조건에 따른 소재의 경도 및 내마모 특성을 파악하고, 미세 조직 분석 및 XRD 분석 등을 통해 내마모 특성 향상에 대한 기본 특성을 평가하였다. 또한 인장시험을 통해 인장강도, 항복강도 및 연신율을 파악하고, 이를 토대로 고주기 피로시험을 실시함으로써 S-N curve를 얻고, 이를 통해 피로 강도 및 피로 수명에 미치는 나노 질화 처리의 영향을 파악하고자 하였다. 플라즈마 이온 질화 시험은 질소와 수소 비율($N_2:H_2$), 진공도, Screen bias voltage, Bias voltage를 변화시켰으며, 챔버 온도는 $400^{\circ}C$로 고정하였으며, 처리시간도 3시간으로 고정하였다. 질소와 수소의 비율은 3:1일 때 최고의 내마모 특성을 보였으며, 진공도는 내마모 특성에 큰 영향을 미치지 않는 것으로 관찰되었다. KP4의 초기 경도값은 약 302 Hv인 반면 최적의 나노 질화처리를 거친 시편에서는 800Hv 이상의 Vickers 경도값을 보였다. SEM 미세조직 분석과 EPMA를 통한 성분 분석을 시행한 결과 표층으로부터 약 $1.5{\mu}m$의 나노질화층을 확인할 수 있었다.

  • PDF