• Title/Summary/Keyword: 나노하이브리드

Search Result 245, Processing Time 0.026 seconds

Fabrication of ATO thin film for IR-cut off by sol-gel method (솔-젤 법에 의한 적외선 차단 ATO 박막 제조)

  • Kim, Jin-Ho;Lee, Kwang-Hee;Lee, Mi-Jai;Hwang, Jonghee;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.230-234
    • /
    • 2013
  • IR cut-off thin films consisted of ATO nanoparticles were successfully fabricated by sol-gel method. The coating solution was synthesized with organic/inorganic hybrid binder and ATO colloidal solution and ATO thin films were coated on a slide glass with the withdrawal speed of 5~40 mm/s. As the withdrawal speed increased from 5 mm/s to 40 mm/s, the thickness of coating thin films also increased from $1.05{\mu}m$ to $4.25{\mu}m$ and the IR cut-off in wavelength of 780~2500 nm increased from 49.5 % to 66.7 %. In addition, the pencil hardness of ATO thin films dried at $80^{\circ}C$ was ca. 5H and the coating films were not removed after a cross cutter tape test because of the hybrid binder synthesized with tetraethylorthosilicate and methyltrimethoxysilane. The surface morphologies, optical properties and film thickness of prepared thin films with a different withdrawal speed were measured by field emission scanning electron microscope (FE-SEM), UV-Vis spectrophotometer, and Dektak.

Photochromic Spiropyran-Functionalized Organic-Inorganic Hybrid Mesoporous Silica for Optochemical Gas Sensing (광화학적 가스 센싱을 위한 광변색 스피로피란 개질된 유기-무기 하이브리드 메조포러스 실리카)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2016
  • In this work, mesoporous silica (SBA-15) was synthesized via self-assembly process using triblock copolymer ($PEO_{20}PPO_{70}PEO_{20}$, P123) as template and tetraethyl orthosilicate (TEOS) as silica source under acidic condition. SBA-15 have high surface area ($704m^2g^{-1}$) and uniform pore size (8.4 nm) with well-ordered hexagonal mesostructure. Spiropyran-functionalized SBA-15 (Spiropyran-SBA-15) was synthesized via post-synthesis process using 3-(triethoxysilyl)propyl isocyanate (TESPI) and 1-(2-Hydroxyethyl)-3,3-dimethy-lindolino-6'-nitrobenzopyrylo-spiran (HDINS). Spiropyran-SBA-15 was produced with hexagonal array of mesopores without damage of mesostructre. Surface area and pore size of Spiropyran-SBA-15 were $651m^2g^{-1}$ and 8.0 nm, respectively. Optochemical properties of Spiropyran-SBA-15 was studied with chemical vapors such as EtOH, THF, $CHCl_3$, Acetone and HCl. Main peaks of photofluorescence of Spiropyran-SBA-15 exhibited blue shift in the range of 603.4~592.1 nm after exposure under EtOH, THF, $CHCl_3$, and Acetone vapors. Normalized peak intensities decreased in the range of 0.8~0.3. The main peak of photofluorescence of Spiropyran-SBA-15 showed significant blue shift of 592.1 nm after exposure under HCl vapor, while normalized peak intensity decreased to 0.1.

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor (이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구)

  • Hye Jeong Son;Bong Seok Kim;Ji Min Kwon;Yu Bin Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.211-221
    • /
    • 2023
  • This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.

Graphene Anode Material Technology Patent Trend Analysis for Secondary Battery (이차전지용 그래핀 음극소재 기술 특허 동향 분석)

  • Jae Eun Shin;Junhee Bae
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.661-669
    • /
    • 2022
  • The need for miniaturization, high efficiency, and green energy resources as an energy storage device through the development of various electronic device has emerged. Accordingly, nanomaterials with excellent electrochemical properties, such as graphene and graphene hybrids, are attracting attention as promising materials. In particular, in the electric vehicle industry, cost reduction of secondary batteries is a key factor that can determine the spread of related industries, and it is most important to analyze R&D trends for battery material technology and respond to future technological development directions. Therefore, in this study, we tried to suggest a direction for R&D activities in the future by analyzing patent trends for graphene anode material technology for secondary batteries and deriving implications. As a result, in the case of anode material technology, the proportion of foreigners in the US and European patent markets was higher than in the Korean and Japanese patent markets, which means that the US and European marketability is high. In addition, Japanese applicants are filing high-level applications not only in the Japanese patent market but also in other countries suggests that Japan is leading the technology in this field. Lastly, the proportion of research institutes in the patent market of Korea and the US remains high compared to that of Japan and Europe, indicating that the commercialization of technology is still slow in those countries. Therefore research institutes and companies in Korea will have to establish their own strategies for developing and securing materials using the results of patent trends in major countries and major companies analyzed in this study.

Preparation of Hybrid Beads Containing Polysulfone Modified with Carbon Nanotubes, Tributyl Phosphate and Di-(2-ethylhexyl)-phosphoric Acid and Removal Characteristics of Sr(II) (Polysulfone에 Carbon Nanotubes, Tributyl Phosphate와 Di-(2-ethylhexyl)-phosphoric Acid를 고정화한 하이브리드 비드의 제조와 Sr(II)의 제거 특성)

  • Kam, Sang-Kyu;Suh, Jung-Ho;Yun, Jong-Won;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.264-269
    • /
    • 2018
  • PSf/D2EHPA/TBP/CNTs beads were prepared by immobilizing carbon nanotubes (CNTs) and two extractants, di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and tributyl phosphate (TBP) on polysulfone (PSf). The prepared PSf/D2EHPA/TBP/CNTs beads were characterized by SEM, TGA, and FTIR. The removal rate of Sr(II) by PSf/D2EHPA/TBP/CNTs beads was well described by the pseudo-second-order kinetic model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was found to be 5.52 mg/g. The results showed that the removal efficiency of Sr(II) by PSf/D2EHPA/CNTs beads prepared in this study was significantly improved compared to that of using PSf/D2EHPA/CNTs beads without TBP.

Cellulose based Electro-Active Paper Actuator: Materials and Applications (셀룰로오스 기반 Electro-Active Paper 작동기: 재료 및 응용)

  • Jang, Sang-Dong;Yang, Sang-Yeol;Ko, Hyun-U;Kim, Dong-Gu;Mun, Sung-Chul;Kang, Jin-Ho;Jung, Hye-Jun;Kim, Jae-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1227-1233
    • /
    • 2011
  • Cellulose Electro-Active Paper (EAPap) has been known as a new smart material that is attractive for a bio-mimetic actuator due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage and low power consumption. Cellulose EAPap is made by regenerating cellulose and aligning its micro-fibrils. This paper introduces several EAPap materials, which are based on natural cellulose and its hybrid nanocomposites mixed/blended with inorganic functional materials. By chemically bonding and mixing with carbon nanotubes and inorganic nanoparticles, the cellulose EAPap can be a hybrid nanocomposite that has versatile properties and can meet material requirements for many applications. Recent research trend of the cellulose EAPap is introduced in terms of material preparations as well as application devices including actuators, temperature and humidity sensors, biosensors, chemical sensors, and so on. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for bio-mimetic robotics, surveillance and micro-aerial vehicles.

The Development of a textile material for transportation through the companies cooperation linking (수송용 섬유소재산업 글로벌경쟁력강화 초광역벨트 연계기술개발)

  • Park, S.M.;Jeon, S.K.;Kim, M.S.;Yoon, J.G.;Kim, M.S.
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.17-17
    • /
    • 2012
  • 수송용 섬유소재는 자동차, 항공기 또는 선박 등의 교통 및 운송 분야에 기여하는 사용되는 섬유소재를 말하며, 내장재, 각종 호스류, 벨트류, 타이어, 안전용품, 필터류 등을 포함하고 일반적으로 섬유, 발포체, 고무, 플라스틱, 접착제 등 유기소재가 결합된 복합체이다. 기존 섬유기술의 혁신과 더불어 IT, NT, BT, ET 등 첨단 기술과의 융합에 의한 고성능 극한 슈퍼섬유, 나노 복합섬유 등의 신소재를 개발하여 산업 전반에서 플라스틱의 금속소재 대체수요를 증가시키고 산업자재의 고성능화, 고기능화, 다양화를 이루기 위해 다양한 노력이 진행하고 있다. 현재 수송용 섬유소재 산업은 기술의 연결고리가 부족하며, 선도기업 및 원천기술이 부족하며, 자동차용 섬유부품소재 관련 기업의 역량도 부족한 실정이다. 이에 광역경제권 연계협력사업을 통해 생산기반의 대경권(대구경북)과 수요중심의 동남권(부산경남)의 네트워크를 강화하여 완성품 업체 및 수요기업과의 네트워킹을 강화하고자 한다. 따라서 본 연구에서 수송용 섬유소재개발, 수송용 친환경 oam-skin 일체형 표피재 개발, 고속성형 복합소재 및 수송용 경량부품 개발, 초경량 고내열 고강도 섬유활용 하이브리드 wire & cable 개발 등 수송용 섬유소재를 개발하고, 또한 수송용 섬유소재의 생산-수요 연계를 통한 투자활성화, 기술개발, 소재 산업 육성을 강화하여, 산학연네트워크구축, 지역 간 협력 및 국제적 협력, 생산-수요기반의 연계협력시스템을 활용한 자립형 수송용 소재 공급기지 완비하는 데 목적이 있다.

  • PDF

Synthesis and Catalytic Characteristics of Thermally Stable TiO2/Pt/SiO2 Hybrid Nanocatalysts (고온에서 안정적인 TiO2/Pt/SiO2 하이브리드 나노촉매의 제작 및 촉매 특성)

  • Reddy, A. Satyanarayana;Jung, Chan-Ho;Kim, Sun-Mi;Yun, Jung-Yeul;Park, Jeong-Young
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.532-537
    • /
    • 2011
  • Thermally stable $TiO_2$/Pt/$SiO_2$ core-shell nanocatalyst has been synthesized by chemical processes. Citrated capped Pt nanoparticles were deposited on amine functionalized silica produced by Stober process. Ultrathin layer of titania was coated on Pt/$SiO_2$ for preventing sintering of the metal nanoparticles at high temperatures. Thermal stability of the metal-oxide hybrid catalyst was demonstrated heating the sample up to $600^{\circ}C$ in air and by investigating the morphology and integrity of the structure by transmission electron spectroscopy. The surface analysis of the constituent elements was performed by X-ray photoemission spectroscopy. The catalytic activity of the hybrid catalysts was investigated by CO oxidation reaction with oxygen as a model reaction.