• Title/Summary/Keyword: 나노코팅

Search Result 863, Processing Time 0.037 seconds

A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구)

  • Chun, Sung-Yong;Kim, Se-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

Growth of Electrochemical Nickel Thin Film on ITO(Indium Tin Oxide) Electrode (ITO(Indium Tin Oxide) 전극상의 전기화학적 Nickel 박막형성)

  • Kim, Woo-Seong;Seong, Jeong-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.155-161
    • /
    • 2002
  • We studied the formation of nickel nano thin film that have various electrochromic properties. Nickel thin film having various thickness will apply photoelectronic devices, specially, electrochromic devices. These devices will apply lens, battery, glass and solar cell that have light, thin, simple and small that applied nanotechnology and quantum dot. Nickel thin film was coated by electrochemical method on ITO electrode. We studied the thin film properties by Cyclic voltammetry, Chronoamperometry. Impedance. X-ray diffraction analysis and Atomic force microscopy.

  • PDF

Characteristics of Silver Metal-mesh Electrodes Coated by Carbon Nanotubes (탄소 나노튜브가 코팅된 은 메탈-메쉬 전극의 특성)

  • Kim, Bu-Jong;Park, Jong-Seol;Hwang, Young-Jin;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.55-59
    • /
    • 2015
  • This study demonstrates hybrid-type transparent electrodes for touch screen panels. The hybrid-type electrodes were fabricated by coating carbon nanotubes (CNTs) on metal meshes. To form the metal-meshes, thin films of silver (Ag) were deposited on glass substrates using the sputtering method and then patterned via photolithography to obtain mesh structures whose line width was $10{\mu}m$ and line-to-line spacing was $300{\mu}m$. CNTs were coated on Ag-meshes by using two different methods, such as spray coating and electrophoretic deposition (EPD). For the samples of a Ag-meshes and CNTs-coated Ag-meshes, their surface morphologies, electrical sheet resistances, and visible-range transmittances and reflectances were characterized and compared. The experimental results indicated that the reflectance of Ag-mesh electrodes was substantially reduced by coating of CNTs. Especially, the hybrid electrodes of Ag-meshes with EPD-coated CNTs showed excellent properties such as sheet resistance lower than $20{\Omega}/{\Box}$, transmittance higher than 90 %, and reflectance lower than 8%.

페로브스카이트 광흡수층을 활용한 고성능 MoS2 기반 광검출기 구현

  • O, Ae-Ri;Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.199.2-199.2
    • /
    • 2015
  • 전이금속 칼코겐화합물(TMD)은 2차원 박막 물질로, 그래핀과 함께 차세대 사물인터넷에 적용할 수 있는 전자소자의 소재로 활용될 것으로 기대되고 있다. 특히 TMD는 그래핀과 다르게 1.2 eV 이상의 넓은 밴드갭을 지녀, 기존 실리콘 기반 반도체 소자를 대체할 차세대 물질로 각광받고 있다. TMD는 또한 실리콘 등의 3차원 반도체보다 광전효율이 뛰어나며, 이를 활용한 광전소자의 개발 및 연구가 활발히 진행되고 있다. 그러나 TMD는 그 두께가 나노미터 단위로 매우 얇아 광흡수율이 매우 떨어지는 단점이 있다. 우리는 이러한 TMD 기반 광전소자의 광흡수율을 향상시키기 위해 광전효율이 매우 뛰어난 페로브스카이트(Perovskite)를 TMD 채널 위에 덮음으로써, 이종접합 광전소자를 구현하였다. TMD 물질은 이황화 몰리브데넘($MoS_2$)을 선택하였으며, 광흡수층으로 선택한 페로브스카이트는 $MAPbI_3$을 스핀 코팅을 통해 TMD 채널 층에 접합하였다. 우리는 Photoluminescence 및 UV-Vis 측정을 통해 페로브스카이트 및 페로브스카이트/$MoS_2$ 층의 광특성을 측정하여 페로브스카이트에서 생성된 광캐리어가 확산되어 $MoS_2$에 전달되는 것을 확인하였다. 우리는 추가로 4가지 서로 다른 파장대의 레이저(520, 655, 785, 850 nm)를 이용하여 페로브스카이트 광흡수층이 있을 때와 없을 때의 $MoS_2$ 광검출기의 성능 변화를 관찰하였다.

  • PDF

Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method (마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅)

  • Kim, Yoo-Jin;Yu, Ri;Park, Eun-Young;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

Synthesis and Mechanical Properties of nc-TiN/a-Si$_3$N$_4$ Nanocomposite Coating Layer (나노복합체 nc-TiN/a-Si$_3$N$_4$ 코팅막의 합성 및 기계적 성질)

  • 김광호;윤석영;김수현;이건환
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.133-140
    • /
    • 2002
  • The Ti-Si-N coating layers were synthesized on SKD 11 steel substrate by a DC reactive magnetron co-sputtering technique with separate Ti and Si targets. The high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses for the coating layers revealed that microstructure of Ti-Si-N layer was nanocomposite, consisting of nano-sized TiN crystallites surrounded by amorphous $Si_3$$N_4$ phase. The highest hardness value of about 39 GPa was obtained at the Si content of ~11at.%, where the microstructure had fine TiN crystallites (about 5nm in size) dispersed uniformly in amorphous matrix. As the Si content in Ti-Si-N films increased, the TiN crystallites became from aligned to randomly oriented microstructure, finer, and fully penetrated by amorphous phase. Free Si appeared in the layers due to the deficit of nitrogen source at higher Si content. Friction coefficient and wear rate of the Ti-Si-N coating layer significantly decreased with increase of relative humidity. The self-lubricating tribe-layers such as $SiO_2$ or (OH)$Si_2$ seemed to play an important role in the wear behavior of Ti-Si-N film against steel.

Fabrication and Properties of Au fine Particles Doped ZrO2 Thin Films by the Sol-gel Method (졸-겔법에 의한 Au 미립자 분산 ZrO2 박막의 제조와 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.475-480
    • /
    • 2003
  • Nanocomposite of Au doped ZrO$_2$ films was prepared, which could be used as non-linear optic materials, selective absorption and transmission films. After heat treatment of prepared thin film by dip-coating method, the characteristics were investigated by X-ray diffraction, UV-VIS Spectrometer, Atomic Force Microscopy (AFM) and Scanning Electron Microscope (SEM). Film thickness was about 150 nm, the Au particle size was 15~35 nm. The thin film had a smooth surface roughness about 1.06 nm. Nonlinearity optics was found that films showed absorption peak at 600~650 nm visible region by plasma resonance of Au metal particles.

Fabrication of CO2 Gas Sensors Using Graphene Decorated Au Nanoparticles and Their Characteristics (Au 나노입자가 코팅된 그래핀 기반 CO2 가스센서의 제작과 그 특성)

  • Bae, Sang-Jin;Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.197-201
    • /
    • 2013
  • This paper describes the fabrication and characterization of graphene based carbon dioxide ($CO_2$) gas sensors. Graphene was synthesized by thermal decomposition of SiC. The resistivity $CO_2$ gas sensors were fabricated by pure graphene and graphene decorated Au nanoparticles (NPs). The Au NPs with size of 10 nm were decorated on graphene. Au electrode deposited on the graphene showed Ohmic contact and the sensors resistance changed following to various $CO_2$ concentrations. Resulting in resistance sensor using pure graphene can detect minimum of 100 ppm $CO_2$ concentration at $50^{\circ}C$, whereas Au/graphene can detect minimum 2 ppm $CO_2$ concentration at same at $50^{\circ}C$. Moreover, Au NPs catalyst improved the sensitivity of the graphene based $CO_2$ sensors. The responses of pure graphene and Au/graphene are 0.04% and 0.24%, respectively, at $50^{\circ}C$ with 500 ppm $CO_2$ concentration. The optimum working temperature of $CO_2$ sensors is at $75^{\circ}C$.

Antimicrobial Properties and Characteristic Changes of Nylon Treated with Glycidyltrimethylammonium chloride(GTAC) and Silver nanoparticles(AgNPs) (Glycidyltrimethylammonium chloride(GTAC)와 Ag 나노입자 가 코팅된 나일론의 항균성 및 특성변화)

  • Kang, Dakyung;Lee, Jaewoong;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • This study deals with antibacterial properties of nylon fiber treated with glycidyltrimethylammonium chloride(GTAC) and silver nanoparticles(AgNPs). Nylon fibers were soaked into GTAC(2-30%, v:v) solution for 20 min. After sample was pre-drying at $80^{\circ}C$ for 10min and cured at $180^{\circ}C$ for 5min. The AgNPs coating was accomplished by soaking in silver colloid solution at $45^{\circ}C$ for 90min. The coated nylon fibers were characterized by scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS). EDS analysis indicated that AgNPs and GTAC was attached on nylon fibers. The treated nylon fibers showed antimicrobial properties against Escherichia coli(ATCC 43895), Pseudomonas aeruginosa(ATCC 13388) and Staphylococcus aureus(ATCCBAA-1707).

Coating of amorphous nitrides on carbon nanotubes and field emission properties (탄소 나노튜브에 대한 비정질 질화막의 코팅 및 전계방출 특성)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1244_1245
    • /
    • 2009
  • Coating of amorphous nitride thin layers, such as boron nitride (BN) and carbon nitride (CN), has been performed on carbon nanotubes (CNTs) for the purpose of enhancing their electron-emission performances because those nitride films have relatively low work functions and commonly exhibit negative electron affinity behavior. The CNTs were directly grown on metal-tip (tungsten, approximately 500 nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Sharpening of the tungsten tips were carried out by electrochemical etching. Morphologies and microstructures of BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM), energy dispersive x-ray (EDX) spectroscopy, and Raman spectroscopy. The electron-emission properties (such as maximum emission currents and turn-on fields) of the BN-coated and CN-coated CNT-emitters were characterized in terms of the thickness of BN and CN layers.

  • PDF