• Title/Summary/Keyword: 나노촉매

Search Result 529, Processing Time 0.03 seconds

Reactive Ceramic Membrane Incorporated with Iron Oxide Nanoparticle for Fouling Control (산화철 나노입자 부착 반응성 세라믹 멤브레인의 막 오염 제어)

  • Park, Hosik;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • Hybrid ceramic membrane (HCM) processes that combined ozonation with a ceramic membrane (CM) or a reactive ceramic membrane (RM), an iron oxide nanoparticles (IONs) incorporated-CM were investigated for membrane fouling control. Alumina disc type microfiltration and ultrafiltration membranes doped with IONs by sintering method were tested under varying mass fraction of IONs. Scanning electron microscope (SEM) images showed that IONs were well-doped on the CM surface and doped IONs were approximately 50 nm in size. Change in the pure water permeability of RM was negligible compared to that of CM. These results indicate that IONs incorporation onto CM had little effect on CM performance in terms of the flux. Natural organic matter (NOM) fouling and fouling recovery patterns during HCM processes confirmed that the RM-ozonation process enhanced the destruction of NOM and reduced the extent of fouling more than the CM-ozonation process by hydroxyl radical formation in the presence of IONs on RM. In addition, analyses of NOM in the feed water and the permeate showed that the efficiency of membrane fouling control results from the NOM degradation during HCM processes; leading to removal and transformation of relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions.

Microfluidic Assisted Synthesis of Ag-ZnO Nanocomposites for Enhanced Photocatalytic Activity (광촉매 성능 강화를 위한 미세유체공정 기반 Ag-ZnO 나노복합체 합성)

  • Ko, Jae-Rak;Jun, Ho Young;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, there has been increasing demand for advancing photocatalytic techniques that are capable of the efficient removal of organic pollutants in water. TiO2, a representative photocatalytic material, has been commonly used as an effective photocatalyst, but it is rather expensive and an alternative is required that will fulfill the requirements of both high performing photocatalytic activities and cost-effectiveness. In this work, ZnO, which is more cost effective than TiO2, was synthesized by using a microreactor-assisted nanomaterials (MAN) process. The process enabled a continuous production of ZnO nanoparticles (NPs) with a flower-like structure with high uniformity. In order to resolve the limited light absorption of ZnO arising from its large band gap, Ag NPs were uniformly decorated on the flower-like ZnO surface by using the MAN process. The plasmonic effect of Ag NPs led to a broadening of the absorption range toward visible wavelengths. Ag NPs also helped inhibit the electron-hole recombination by drawing electrons generated from the light absorption of the flower-like ZnO NPs. As a result, the Ag-ZnO nanocomposites showed improved photocatalytic activities compared with the flower-like ZnO NPs. The photocatalytic activities were evaluated through the degradation of methylene blue (MB) solution. Scanning electron microscopy (SEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS) confirmed the successful synthesis of Ag-ZnO nanocomposites with high uniformity. Ag-ZnO nanocomposites synthesized via the MAN process offer the potential for cost-effective and scalable production of next-generation photocatalytic materials.

Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide (안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구)

  • Lee, Kug-Seung;Park, Hee-Young;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Electrocatalytic activities and stabilities of Pt supported on Sb-doped $SnO_2$ (ATO) were examined for ethanol oxidation reactions. Pt colloidal particles were deposited on ATO nanoparticles (Pt/ATO) and the prepared electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), and cyclic voltammetry. Electrochemical activity of the Pt/ATO for ethanol electro-oxidation was compared to those of Pt supported on carbon (Pt/C) and commercial PtRu/C. The activitiy of the Pt/ATO was much higher than those of the Pt/C and commercial PtRu/C. The Pt/ATO exhibited much higher electrochemical stabilities than the Pt/C in 0.5M ${H_2}{SO_4}$ and in 0.5M ${H_2}{SO_4}$/1M ${C_2}{H_5}OH$. According to TEM, the growth rate of Pt particles was lower in the Pt/ATO than it was in the Pt/C. The ATO nanoparticle appears to be a promising support material that promotes electrochemical reactions and stabilizes catalyst particles in direct ethanol fuel cell.

Synthesis of Trimetallic (PtRu-Sn/VC, PtRu-Ni/VC) Catalysts by Radiation Induced Reduction for Direct Methanol Fuel Cell (DMFC) (방사선환원법을 이용한 직접메탄올연료전지용(DMFC) 삼성분계촉매(PtRu-Sn/VC, PtRu-Ni/VC)의 합성)

  • Kim, Sang Kyum;Park, Ji Yun;Hwang, Sun Choel;Lee, Do Kyun;Lee, Sang Heon;Rhee, Young Woo;Han, Moon Hee
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • Nano-sized PtRu-Ni/VC and PtRu-Sn/VC electrocatalysts were synthesized by a one-step radiation-induced reduction (RIR) (30 kGy) process using distilled water as the solvent and Vulcan XC-72 as the supporting material. The obtained electrocatalysts were characterized by transmission electron microscopy (TEM), scanning electron microscope energy dispersive spectroscopic (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The catalytic efficiency of electrocatalysts was examined for oxygen reduction, MeOH oxidation and CO stripping decreased in the following order, Hydrogen stripping : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK). MeOH oxidation : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/ VC$^{(R)}$ (E-TEK). Unit cell performance : PtRu-Sn/VC > PtRu-Ni/VC > PtRu/VC$^{(R)}$ (E-TEK) catalysts.

Preparation of Superhydrophobic Surfaces Using Agglomeration Control of Silica Nanoparticles by Organic Solvent and Non-fluoride Self-assembled Monolayers (유기용매에 의한 실리카 나노입자의 응집조절과 비불소계 자기조립박막을 이용한 초발수 표면 제조)

  • Kim, Taeyoon;Jeong, Jin;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.116-121
    • /
    • 2015
  • In this study, octadecyltrichlorosilane (OTS) has been used to replace fluoro-silanes which are much more expensive than OTS. In order to improve the mechanical and adhesive properties of coating layers, inorganic binders were separately synthesized based on sol-gel reaction in acidic condition. Since the synthesized silica nanoparticles gave only nano-scaled roughness, superhydrophobicity is not well obtained. Here, we present a new simple approach by intentionally inducing particle aggregation in the solution which is controlled by adjusting solvent amount. With selecting suitable sizes of silica nanoparticles, superhydrophobic surfaces were obtained with increasing the amount of organic solvents after surface hydrophobization using OTS, and an extremely water-repellent behavior was observed with zero sliding angle. This superhydrophobicity was achived only for the dielectric constant lower than 25, regardless of the composition of solvent, meaning that the dielectric constant could be an excellent indicator for fabricating superhydrobic surfaces induced by particle aggregation in the solution.

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

ZnO Nanostructure Characteristics by VLS Synthesis (VLS 합성법을 이용한 ZnO 나노구조의 특성)

  • Choi, Yuri;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO) nanorods were grown on the pre-oxidized silicon substrate with the assistance of Au and the fluorine-doped tin oxide (FTO) based on the catalysts by vapor-liquid-solid (VLS) synthesis. Two types of ZnO powder particle size, 20nm, $20{\mu}m$, were used as a source material, respectively The properties of the nanorods such as morphological characteristics, chemical composition and crystalline properties were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscope (FE-SEM). The particle size of ZnO source strongly affected the growth of ZnO nanostructures as well as the crystallographic structure. All the ZnO nanostructures are hexagonal and single crystal in nature. It is found that $1030^{\circ}C$ is a suitable optimum growth temperature and 20 nm is a optimum ZnO powder particle size. Nanorods were fabricated on the FTO deposition with large electronegativity and we found that the electric potential of nanorods rises as the ratio of current rises, there is direct relationship with the catalysts, Therefore, it was considered that Sn can be the alternative material of Au in the formation of ZnO nanostructures.

Synthesis of Heteroatom-Carbon Nanosheets by Solution Plasma Process (솔루션 플라즈마를 이용한 이종 원소 카본 나노시트의 합성)

  • Hyeon, Gwang-Ryong;Jeong, Gwang-Hu;Park, Il-Cho;Lee, Jeong-Hyeong;Han, Min-Su;Kim, Seong-Jong;Saito, Nagahiro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.114-114
    • /
    • 2018
  • 탄소 재료는 뛰어난 물성에서 다양한 재료로의 응용이 기대되고 있다. 특히, 이종 원소 함유 카본 재료는 전기적 특성과 촉매성의 발현 등 새로운 기능을 카본 재료에 부여할 수 있어서 연료 전지, 에너지 저장, 태양 전지 등에의 응용이 기대되고 있다. 최근, 용액 중의 저온 플라즈마인 솔루션 플라즈마(solution plasma process)를 이용하여 벤젠 용액 등에서 탄소 재료 합성에 성공하였다. 그러나 기존의 연구에서는 솔루션 플라즈마 프로세스를 이용하여 합성한 이종원소 카본은 전도성이 낮아 이종원소의 함유량을 낮추는 고온의 열처리가 필요했다. 따라서 본 연구에서는 우수한 물리적 전기적 특성을 갖는 그래핀(graphene)과 같은 이종 원소 카본 나노시트(heteroatom carbon nanosheets)의 합성 및 메커니즘(mechanism)에 대해 검토하였다. 다양한 이종원소를 포함한 유기용매 안에 바이폴라 펄스 전원에 의한 전압을 두 텅스텐 전극 간에 인가하고, 솔루션 플라즈마를 생성하여 이종원소 카본 재료를 합성했다. 플라즈마 생성은 텅스텐 봉을 전극으로 사용하고 전압을 2.0 kV, 펄스 주파수를 200 kHz, 펄스 폭을 $1.0{\mu}s$, 전극 간 거리를 1.5 mm에서 일정하게 유지하며 200 mL 유기용매 중에서 방전시키는 것으로 재료를 합성했다. 플라즈마 방전 후, 필터을 이용하여 흡인 여과한 뒤 $200^{\circ}C$에서 1 시간 동안 건조 시켰다. 건조 후의 이종원소 카본의 물리적 특성을 원소 분석, X선 회절 법(XRD), 저항률 측정, 투과형 전자 현미경(TEM) 및 라만 분광법, 전자 현미경(SEM), X-선광전자분광기(XPS)등을 이용하여 카본의 형상 및 특성을 분석하였다. 그 결과 다양한 이종원소를 포함한 유기용매 중 2-pyrrolidone을 사용했을 때, 이종 원소 카본 나노시트를 합성하는데 성공하였다. 또한, 이 연구방법을 통해서 솔루션 플라즈마 프로세스를 통한 카본 나노시트 합성의 메커니즘을 규명하였다.

  • PDF

TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution (Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유)

  • Shin, Dong-Geun;Jin, Eun-Ju;Lee, Yoon-Joo;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Riu, Doh-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.276-281
    • /
    • 2015
  • Nanostructured $TiO_2-SiO_2$ materials have widely been used as anti-reflecting coating, optical-chemical sensors and catalysts because of their superior optical and thermal properties as well as chemical durability. Web type $SiO_2$ microfibers with nano-crystalline $TiO_2$ were prepared by electrospinning of Ti-PCS mixed solution and oxidation controlled heat-treatment, rather simple than sol-gel process. Nano-crystalline anatase phase were formed for the heat-treatment up to $1200^{\circ}C$ and they were finely dispersed in the amorphous $SiO_2$ matrix.

나노$TiO_2$계 화합물과 응용

  • Hwang, Yong-Gil;Gil, Sang-Cheol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.57.1-57.1
    • /
    • 2009
  • 나노이산화티타늄은 인체에는 화장품, 의약, 식품분야 등에 쓰이고 외부 환경 재료에는 광촉매로서 유독가스 정화제, 옥내 외 항균, 수소발생 가시광 응답형 촉매 및 멤브레인 필터 등과 전자소재용 유전재료, 발광 재료 등 용도가 다양하다. 나노 산화티타늄 화합물의 제조법은 수열합성법, 기상법 등 여러 방법이 있다. 이들에 대한 리뷰의 목적은 2009년도 정부의 투자 계획 중에서 본제목에 관련되는 핵심 산업 재원 원천기술 개발, 태양광, 풍력 등의 신재생 에너지 개발, 록색 기술 개발을 통한 에너지절약형 LED 개발, 차세대 핵심환경 기술 개발, 핵심나노기반기술개발 등의 개발을 위하여 4,363억 원의 예산을 편성하고 연구자와 기술자들이 참여하여 유익한 실적이 창출되기를 원하고 있으므로 본 발표자들은 이 분야에서 연구하는 연구자와 기술자들에게 이 분야에 관련되는 자료를 참고로 제시하는데 있다. 페로브스카이트형 산화물인 유전재료($BaTiO_3$), 발광재료(CaTiO3:Pr3+적색), 박막형 반응기재료($Ca0.8Sr0.2TiO_3$), 등의 여러 가지 산화물은 류통식 급속 승온 수열 합성법, 겔 졸 법, 수열 합성법 등 여러 방법에 의하여 페로브스카이트형 산화물 입자 직경이 약 20nm~100nm 범위까지 합성된다. 태양광을 조사하여 물을분해 해서 수소를 생산하는 산화티타늄계 가시광 응답형 Vis-$TiO_2$ 박막은 기상법으로 제조하는데 한 예로써 RF 스퍼터링법으로 박막을 제조하여 수소와 산소를 회수하였으며, 황도프산화티타늄, 질소 도프 산화티타늄은 유기물 분해에 의한 공해제거, $NO_x$ 제거 등 환경정화에 사용되고, 고온 고압수법/산화티타늄 복합기술에 의해서는 바이오매스 분해 하고, 일종의 수열법인 개량형 HyCOM 법은 가시광 응답성 산화티타늄을 합성하여 NO가스 제거에 사용한다. 이들 여러 방법에 관한 것을 소개하고저 한다.

  • PDF