• Title/Summary/Keyword: 나노센서

Search Result 652, Processing Time 0.03 seconds

Strain-free AlGaN/GaN Nanowires for UV Sensor Applications (Strain-free AlGaN/GaN 자외선 센서용 나노선 소자 연구)

  • Ahn, Jaehui;Kim, Jihyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.72-75
    • /
    • 2012
  • In our experiments, strain-free nanowires(NWs) were dispersed on to the substrate, followed by e-beam lithography(EBL) to fabricate single nanowire ultraviolet(UV) sensor devices. Focused-ion beam(FIB), micro-Raman spectroscopy and photoluminescence were employed to characterize the structural and optical properties of AlGaN/GaN NWs. Also, I-V characteristics were obtained under both dark condition and UV lamp to demonstrate AlGaN/GaN NW-based UV sensors. The conductance of a single AlGaN/GaN UV sensor was 9.0 ${\mu}S$(under dark condition) and 9.5 ${\mu}S$ (under UV lamp), respectively. The currents were enhanced by excess carriers under UV lamp. Fast saturation and decay time were demonstrated by the cycled processes between UV lamp and dark condition. Therefore, we believe that AlGaN/GaN NWs have a great potential for UV sensor applications.

Application of Nano-TDR Health Monitoring System in Civil Engineering (나노-TDR센서를 이용한 토목구조물 모니터링 시스템)

  • Han, Heui-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.93-100
    • /
    • 2009
  • This study presents reasonable relationships to estimate the deformation based on beam mechanism analysis and TDR(Time Domain Reflectometry) data. To declar the length points of co-axial cable installed in civil structure, Nano material ($BaTiO_3$ powders and silver mixture) is used on co-axial cables. From the laboratory test, nano material could make the correct information about attached cable points on beam, and TDR sensor system and Fourier series (data filter) found out the deformation of beam. Therefore it is concluded that the correct deformed information of beam were acquired by Nano-TDR and Fourier filter, they are much more effective to apply at health monitoring system in civil structure compared to conventional TDR or Fiber Optic Sensor (FOS) systems.

나노소자 기술과 바이오 측정

  • 윤완수
    • Journal of the KSME
    • /
    • v.44 no.10
    • /
    • pp.34-43
    • /
    • 2004
  • 이 글에서는 나노전자소자 기술을 이용한 바이오센서 개발 연구에 대하여 간단히 소개한다.

  • PDF

Preparation of ZnO nanorods by hydrothermal method and their $NO_2$ sensing characteristics (수열합성법을 이용한 ZnO 나노로드의 제조 및 이산화질소 감응 특성)

  • Cho, Pyeong-Seok;Kim, Ki-Won;Lee, Jong-Heun
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.506-511
    • /
    • 2006
  • ZnO nanorods were prepared by the hydrothermal reaction of a solution containing $Zn(NO_3)_2{\cdot}6H_2O$, NaOH, cyclohexylamine, ethanol and water, and their $NO_2$ and CO sensing behaviors were investigated. By the control of water concentration in solution, the morphology and agglomeration of ZnO nanorods could be manipulated, which is associated with the variation of $[OH^-]$ resulted from an interaction between water and cyclohexylamine. Sea-urchin-like and well-dispersed ZnO nanorods were prepared at low and high water content, respectively. Well-dispersed ZnO nanorods showed 1.8 fold change in resistance at 1 ppm $NO_2$ while there was no significant change in resistance at 50 ppm CO. This selective detection of $NO_2$ in the presence of CO can be used in automated car ventilation systems.

Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator (자체-센서와 미세 작동기를 위한 CNT/PVDF 및 ITO/PVDF 나노복합재료의 전기적 및 계면 내구성 비교 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.12-17
    • /
    • 2011
  • Interfacial durability and electrical properties of CNT or ITO coated PVDF nanocomposites were investigated for self-sensor and micro actuator applications. Electrical resistivity of nanocomposites for the durability on interfacial adhesion was measured using four points method via fatigue test under cyclic loading. CNT/PVDF nanocomposite exhibited lower electrical resistivity and good self-sensing performance due to inherent electrical property. Durability on the interfacial adhesion was good for both CNT and ITO/PVDF nanocomposites. With static contact angle measurement, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were obtained to verify the correlation with interfacial adhesion durability. The optimum actuation performance of CNT or ITO coated PVDF specimen was measured by the displacement change using laser displacement sensor with changing frequency and voltage. The displacement of actuated nanocomposites decreased with increasing frequency, whereas the displacement increased with voltage increment. Due to nanostructure and inherent electrical properties, CNT/PVDF nanocomposite exhibited better performance as self-sensor and micro actuator than ITO/PVDF case.

Ultra-High Responsive Dissolved Oxygen Sensor for Bio/Environmental Sensor Applications (바이오/환경 센서 응용을 위한 응답특성이 향상된 초소형 용존산소 센서)

  • Lee, Yi-Jae;Kim, Jung-Doo;Park, Jae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1541_1542
    • /
    • 2009
  • 본 논문에서는 바이오/환경센서 응용을 위해 실리콘 기판위에 나노 동공구조 백금 전극을 작동전극으로 갖는 소형화된 용존산소센서를 설계 및 제작하고 그 특성을 분석하였다. 제작된 용존산소 센서는 15 mm $\times$ 8 mm $\times$ 0.6 mm의 소형화된 크기를 가졌으며, -0.9 V의 인가전위 시에 각각 산소 포화 상태와 무산소 상태에서 2.14 mA와 0.8 mA의 환원전류 특성을 보였다. 또한, 다양한 산소 농도상태에서 각기 다른 전류응답 차이를 보였다. 이를 통해서 다양한 산소농도에 대한 센싱특성을 검증하였다. 한편, 제작된 용존산소 센서는 전극제작에 사용된 나노 동공구조 백금 전극의 높은 촉매 특성에 기인하여 90% 전류응답시간이 7초 이내로 기발표된 다른 연구들에 비해 현저히 향상된 응답특성을 보였다.

  • PDF

Characteristics analysis and Fabrication of Integrated Piezoresistive Temperature & Humidity Sensors (압저항형 온·습도 복합 센서 제작 및 특성 분석)

  • Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.31-36
    • /
    • 2014
  • In this paper, we developed an intergrated piezoresistive temperature and humidity sensor using nano-technology, and evaluated the properties. In the measuring range from $20^{\circ}C$ to $80^{\circ}C$, output sensitivity of temperature was about 0.75mV/$1^{\circ}C$. Output sensitivity of humidity was about 1.35mV/10%(RH). Therefore, developed sensor suggests that it is possible applicable to the general residential environment.

A study on the manufacture of humidity sensors using layered silicate nanocomposite materials (층상 실리케이트계 나노복합 소재 적용 습도센서 제조에 관한 연구)

  • Park, Byoung-Ki
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, evaluated the properties of layered silicate-based nanocomposite sensitive film. For the fabrication of nanocomposite materials, we selected organically modified layered silicate materials, specifically Cloisite® and Bentone®, which were treated with quaternary ammonium salts. The impedance of the humidity sensors containing organically modified montmorillonite/hectorite clay decreased with increasing relative humidity(RH%). In the case of the Cloisite® humidity sensor exhibited slightly better impedance linearity and hysteresis compared to the Bentone® 38 humidity sensor. Additionally the impedance of the sensor with Bentone® 38 addition was the lowest when compared to the Cloisite®-modified sensor. Comparing the Cloisite®-modified sensors individually, we observed different moisture absorption characteristics based on the hydrophilic properties of the organic-treated materials. The response speed of Cloisite® 93A tended to be slower due to differences in moisture evaporation rates influenced by the hydrophilic organic components. Based on these results, moisture barriers utilizing organically modified layered silicate materials may exhibit slightly lower moisture absorption properties compared to conventional polymer-based moisture barriers. However, their excellent stability, simple processing, and cost-effectiveness make them suitable for humidity sensor applications.

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.