• Title/Summary/Keyword: 나노분말 합성

Search Result 383, Processing Time 0.022 seconds

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Trends on Technology of Eco-friendly Metal and Ceramic Nanoparticle Inks for Direct Printing (다이렉트 프린팅용 청정 금속 및 세라믹 나노 입자 잉크 기술 동향)

  • Hong, Sung-Jei;Kim, Jong-Woong;Han, Chul-Jong;Kim, Young-Sung;Hong, Tae-Whan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, trends on technology of metal and ceramic nanoparticle inks using eco-friendly process were reviewed. There are two types of eco-friendly processes, dry and wet. In case of dry process, gas evaporation process was being used to synthesize the ultrafine nanoparticles. Also, in case of wet process, low temperature process excluding harmful elements such as $Cl^-$ and ${NO_3}^-$ was being used to synthesize the ultrafine nanoparticles. Sizes of nanoparticles were less than 10 nm using the eco-friendly processes, and the nanoparticles were well dispersed into ink solvent. The ink was successfully applied to fabricate directly printed pattern.

The TiO2 based electrode consisting binary catalysts which is prepared by anodization for water oxidation application (양극산화법을 통해 제조한 IrO2-RuO2 촉매를 포함하는 고성능 수전해 산소발생용 TiO2 나노튜브 전극)

  • Yu, Hyeon-Seok;O, Gi-Seok;Lee, Gi-Baek;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.191.2-191.2
    • /
    • 2016
  • $TiO_2$는 우수한 화학적 및 물리적 안정성 때문에 수전해 장기간 사용에 적합한 전기화학 전극으로 여겨진다. 큰 표면적을 갖는 $TiO_2$를 제조하기 위한 수많은 방법 중 양극산화(anodization)는 비교적 간단하고 저렴한 공정으로 인하여 매우 실용적인 방법으로서 알려져 있다. 특히, 고도로 정렬 된 $TiO_2$ 나노튜브($TiO_2$ NTs) 의 경우에는 분말상과 달리 전극제조를 위해 추가적인 접착제를 필요하지 않다. 그러나, $TiO_2$는 일반적으로 절연 특성을 나타내기 때문에 전극의 활용을 위해서는 본질적으로 촉매의 사용이 불가피하다. 다수의 전기 촉매 중, $IrO_2$$RuO_2$는 수전해 분야에 잘 알려진 산화 촉매이다. 그럼에도 불구하고, 특유의 높은 종횡비 때문에 $TiO_2$ 나노튜브에 전기 촉매를 균일하게 도핑하는 것은 많은 어려움이 따른다. 이를 해결하기 위한 방법으로 $RuO_2$를 도핑하기 위한 단일공정 $TiO_2$ 양극산화 기술이 보고된 바 있다. 본 연구에서는 2원 촉매($IrO_2$$RuO_2$)를 $TiO_2$ 나노튜브에 도핑하기 위한 단일공정 양극산화 기술에 대하여 연구하였다. 전구물질로써 $KRuO_4$($RuO_2$ 전구체)와 IrOx 나노입자(IrOx NPs, $IrO_2$ 전구체)를 사용하였다. 특히, IrOx를 나노 입자는 $IrCl_3$로부터 중간 매체로 합성된다. IrOx는 단일공정 양극산화 중에 $TiO_2$ 나노튜브 상에 도핑 가능한 이온 형태인 $IrO_4$-로 전환될 수 있다. 제조된 시료는 열처리 후 바로 전극으로 사용되었으며 SEM, XPS, TEM, ICP-OES 등으로 정성, 정량 분석을 수행하였다. LSV와 EIS를 통해 전기화학적 성능 평가가 이루어졌으며, LSV를 통해 포집한 기체는 가스 크로마토그래피를 사용하여 정량분석한 후 그 효율을 측정하였다.

  • PDF

The Fabrication of Cobalt Nanopowder by Sonochemical Polyol Synthesis of Cobalt Hydroxide and Magnetic Separation Method (수산화코발트의 초음파 폴리올 합성과 자성 선별법을 이용한 코발트 나노 분말의 제조)

  • Byun, Jong Min;Choi, Myoung Hwan;Shim, Chang Min;Kim, Ji Young;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • In this study, cobalt nanopowder is fabricated by sonochemical polyol synthesis and magnetic separation method. First, sonochemical polyol synthesis is carried out at $220^{\circ}C$ for up to 120 minutes in diethylene glycol ($C_4H_{10}O_3$). As a result, when sonochemical polyol synthesis is performed for 50 minutes, most of the cobalt precursor ($Co(OH)_2$) is reduced to spherical cobalt nanopowder of approximately 100 nm. In particular, aggregation and growth of cobalt particles are effectively suppressed as compared to common polyol synthesis. Furthermore, in order to obtain finer cobalt nanopowder, magnetic separation method using magnetic property of cobalt is introduced at an early reduction stage of sonochemical polyol synthesis when cobalt and cobalt precursor coexist. Finally, spherical cobalt nanopowder having an average particle size of 22 nm is successfully separated.

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

Preparation of the Nano Cobalt Powder by Wet Chemical Reduction Method (액상환원공정을 이용한 나노 코발트 분말의 합성)

  • Hong, Hyun-Seon;Ko, Young-Dae;Kang, Lee-Seung;Kim, Geon-Hong;Jung, Hang-Chul
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.244-249
    • /
    • 2011
  • Spherical nanosized cobalt powder with an average size of 150-400 nm was successfully prepared at room temperature from cobalt sulfate heptahydrate ($CoSO_4{\cdot}7H_2O$). Wet chemical reduction method was adopted to synthesize nano cobalt powder and hypophosphorous acid ($H_3PO_2$) was used as reduction agent. Both the HCP and the FCC Co phase were developed while $CoSO_4{\cdot}7H_2O$ concentration ranged from 0.7 M to 1.1 M. Secondary phase such as $Co(OH)_2$ and $CO_3O_4$ were also observed. Peaks for the crystalline Co phase having HCP and FCC structure crystallized as increasing the concentration of $H_3PO_2$, indicating that the amount of reduction agent was enough to reduce $Co(OH)_2$. Consequently, a homogeneous Co phase could be developed without second phase when the $H_3PO_2/CoSO_4{\cdot}7H_2O$ ratio exceeded 7.

Research on Synthesis and Sintering Behavior of Nano-sized (Pb, La)TiO3 Powders Using Mechano Chemical Process (기계화학공정에 의한 (Pb, La)TiO3 나노 분말의 합성 및 소결 특성 연구)

  • Lee, Young-In;Goo, Yong-Sung;Lee, Jong-Sik;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below $1050^{\circ}C$ by using $Bi_2O_3$ powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and $1150^{\circ}C$, the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding $Bi_2O_3$ and the specimen with the relative densitiy over 96% were fabricated below $1050^{\circ}C$ when 2 wt% of $Bi_2O_3$ was added.

Synthesis and Nucleation Behavior of MoO3 Nano Particles with Concentration of Precursors (전구체 농도에 따른 MoO3 나노 분말 합성 및 핵생성 거동)

  • Lee, Seyoung;Kwon, Namhun;Roh, Jaeseok;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.394-400
    • /
    • 2020
  • Molybdenum trioxide (MoO3) is used in various applications including sensors, photocatalysts, and batteries owing to its excellent ionic conductivity and thermal properties. It can also be used as a precursor in the hydrogen reduction process to obtain molybdenum metals. Control of the parameters governing the MoO3 synthesis process is extremely important because the size and shape of MoO3 in the reduction process affect the shape, size, and crystallization of Mo metal. In this study, we fabricated MoO3 nanoparticles using a solution combustion synthesis (SCS) method that utilizes an organic additive, thereby controlling their morphology. The nucleation behavior and particle morphology were confirmed using ultraviolet-visible spectroscopy (UV-vis) and field emission scanning electron microscopy (FE-SEM). The concentration of the precursor (ammonium heptamolybdate tetrahydrate) was adjusted to be 0.1, 0.2, and 0.4 M. Depending on this concentration, different nucleation rates were obtained, thereby resulting in different particle morphologies.

Effect of Process Variables and exisisting Ions on Highly Active Nano-sized ITO Powders Prepared by Precipitation Method (고활성 ITO (Indium-Tin Oxide) 나노 분말을 침전법으로 합성시의 공정 변수 및 존재하는 이온의 영향)

  • Lee, In-Gyu;Noh, Bong-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.450-457
    • /
    • 2008
  • The objectives of this study were the development of a synthesis technique for highly active nanosized ITO powder and the understanding of the reaction mechanisms of the ITO precursors. The precipitation and agglomeration phenomena in ITO and $In_{2}O_{3}$ precursors are very sensitive to reaction temperature, pH, and coexisting ion species. Excessive $Cl^-$ ion and $Sn^{+4}$ ions had a negative effect an synthesizing highly active powders. However, with a relevant stabilizing treatment the shape and size of ITO and $In_{2}O_{3}$ precursors could be controlled and high density sintered products of ITO were obtained. By applying the reprecipitation process (or stabilization technique), highly active ITO and $In_{2}O_{3}$ powders were synthesized. Sintering these powders at $1500^{\circ}C$ for 5 hours produced 97% dense ITO bodies.

Synthesis of Nano-size Aluminum Nitride Powders by Chemical Vapor Process (화학기상공정을 이용한 나노질화알루미늄 분말 합성)

  • Pee, Jae-Hwan;Park, Jong-Chul;Kim, Yoo-Jin;Hwang, Kwang-Taek;Kim, So-Ryong
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.496-502
    • /
    • 2008
  • Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the $AlCl_{3}-NH_{3}-N_{2}$ system. Aluminum chloride ($AlCl_3$) as the starting material was gasified in the heating chamber of $300^{\circ}C$. Aluminum chloride gas transported to the furnace in $NH_{3}-N_{2}$ atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and $1200^{\circ}C$, the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.