• Title/Summary/Keyword: 끝판

Search Result 5, Processing Time 0.015 seconds

Analysis of End-Plated Propellers by Panel Method (패널법에 의한 날개끝판부착 프로펠러의 해석)

  • C.S. Lee;I.S. Moon;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.55-63
    • /
    • 1995
  • This paper describes the procedure to analyze the performance of the end-plated propeller(EPP) by a boundary integral method. The screw blade(SB) and end-plate(EP) are represented by a set of quadrilateral panels, where the source and normal dipole of uniform strength are distributed. The perturbation velocity potential, being the only unknown via the potential-based formulation, is determined by satisfying the flow tangency condition on the blade and the end-plate at the same time. The Kutta condition is satisfied through an iterative process by requiring the null pressure jump across the upper and lower sides of the trailing edges of both the SH and the EP. Sample calculations indicate that the EP increases the loading near the tip of the SB while spreading the trailing vortices along the trailing edge of the EP, thus avoiding the strong tip-vortex formation. Predicted performance of the EPP shows good correlations with the experimental results. The method is therefore considered applicable in designing and analyzing the EPP which may be an alternative for energy-saving propulsive devices.

  • PDF

Viscous Flow Analysis around a Wind Turbine Blade with End Plate and Rake (풍력터빈 날개의 끝판과 레이크 효과에 대한 점성유동장 해석)

  • Kim, Ju-In;Kim, Wu-Joan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Turbulent flow analysis around a wind turbine blade was performed to evaluate the power performance of offshore wind turbine. Fluent package was utilized to solve the Reynolds-averaged Navier-Stokes equations in non-inertial rotating coordinates. The realizable k-$\varepsilon$ model was used for turbulence closure and the grid system combining structured and unstructured grids was generated. In the first, lift and drag forces of 2-D foil section were calculated and compared with existing experimental data for the validation. Then torque and thrust of the wind turbine blade having NACA 4-series sections were calculated with fixed pitch angle and rpm. Tip speed ratio was varied by changing wind speed. In the next, three kinds of end plate were attached at the tip of blade in order to increase the power of the wind turbine. Among them the end plate attached at the suction side of the blade was found to be most effective. Furthermore, performance analysis with tilt angle and rake was also performed.

On the Influence of End Plates upon the Tip Vortex Cavitation Characteristics of a Fin Stabilizer (안정기 핀의 팁 보오텍스 캐비테이션 특성에 미치는 날개 끝판의 효과)

  • Seo, Dae-Won;Kim, Joung-Hyun;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.18-28
    • /
    • 2008
  • Fins are widely used for roll stabilization of passenger ferries and high performance naval ships, among others. In the present study, numerical simulations are performed to investigate the influence of end-plates upon the cavitation characteristics of a stabilizer fin for various angles of attack and speeds and the results are verified through a series of model experiments. It is found that a considerable retardation in tip vortex cavitation can be achieved with attachment of end-plates at the tip of the stabilizer fin. The results can be utilized for the design of stabilizer fins as well as the development of high performance control devices for ships.

Optimization of Automotive PEMFC Bipolar Plates considering Heat Transfer and Thermal Loads (열전달 및 열하중을 고려한 자동차 연료전지(PEMFC) 분리판의 두께 최적설계)

  • Kim, Young-Sung;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2015
  • A stack in the proton exchange membrane fuel cell (PEMFC) consists of bipolar plates, a membrane electrode assembly, a gas diffusion layer, a collector and end plates. High current density is usually obtainable partially from uniform temperature distribution in the fuel cell. A size optimization method considering the thermal expansion effect of stacked plates was developed on the basis of finite element analyses. The thermal stresses in end, bipolar, and cooling plates were calculated based on temperature distribution obtained from thermal analyses. Finally, the optimization method was applied and optimum thicknesses of the three plates were calculated considering both fastening bolt tension and thermal expansion of each unit cell (72 cells, 5kW). The optimum design considering both thermal and mechanical loads increases the thickness of an end plate by 0.64-0.83% the case considering only mechanical load. The effect can be enlarged if the number of stack increases as in an automotive application to 200-300 stacks.

Taxonomic Revision of Genus Takydromus (Squamata: Lacertidae) in Korea (한국산 장지뱀속(유린목:장지뱀과)의 분류학적 재고찰)

  • Chang, Min-Ho;Song, Jae-Young;Oh, Hong-Shik;Chung, Kyu-Hoi
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.95-101
    • /
    • 2006
  • The present paper attempts to elucidate the taxonomic status of five species of Takydromus (T. amurensis, T. wolteri, T. tachydromoides oldi, T. kwagakunesis and T. auroralis) reported in Korean Peninsula to date. For this purpose 114 Takydromus specimens were collected from April 2003 to october 2004 in Southern Korean peninsula and morphological characters inclusive of the presence of contact between front-nasal and fostral and the number of femoral pores have been analyzed. The analysis reveals that T. kwagakunesis and T. auroralis should be synonymized to T. amurensis. In addition, the Korean Takydromus consists of two species of T. amurensis and T. wolteri.