• Title/Summary/Keyword: 끝벽 열전달

Search Result 8, Processing Time 0.024 seconds

Effect of Incidence Angle on the Endwall Heat Transfer Within a Turbine Rotor Passage (입사각이 터빈 동익 끝벽 열전달에 미치는 영향)

  • Park Jin Jae;Lee Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.696-702
    • /
    • 2005
  • The effect of incidence angle on the endwall heat (mass) transfer characteristics within a turbine rotor cascade passage has been investigated by employing the naphthalene sublimation technique. The experiments are carried out at the Reynolds number of $2.78{\times}10^5$ for two incidence angles of -5 and 5 dog. The result shows that the incidence angle has a considerable influence on the transport phenomena over the endwall. The positive incidence angle tends to promote development of the pressure-side leg of a leading-edge horseshoe vortex. The endwall thermal load is augmented by 7.5 percents at i = -5 deg but is reduced by 2.5 percents at i = 5 deg, in comparison with that at the design condition.

Improvement of the flow characteristics for a $90^{\circ}$ turning duct by the nonaxisymmetric endwall and endwall boundary layer fence ($90^{\circ}$ 곡관에서의 비축대칭 끝벽과 끝벽 경계층 판을 이용한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Sang-Jo;Seo, Jong-Chul;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.406-413
    • /
    • 2011
  • This paper presents the shape optimization of a nonaxisymmetric endwall and endwall boundary layer fence which improve the aerothermal environment of a gas turbine passage. The endwall and fence methods were used simultaneously. The turbine passage was simulated by a $90^{\circ}$ turning duct ($Re_D$=360,000). The main purpose of the present investigation was to focus on finding a nonaxisymmetric endwall and boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerothermal environment can be achieved through the application of a nonaxisymmetric endwall and boundary layer fence.

  • PDF

Endwall Heat (Mass) Transfer Characteristics of a Linear Turbine Cascade at Off-Design Conditions (탈설계점에서의 선형 터빈 익열 끝벽 열(물질)전달 특성)

  • Lee, Sang-Woo;Park, Jin-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1092-1097
    • /
    • 2004
  • The heat (mass) transfer characteristics on the endwall surface of a first-stage linear turbine rotor cascade at off-design conditions has been investigated by employing the naphthalene sublimation technique. The experiments are carried out at the Reynolds number of $2.78{\times}10^{5}$ for two incidence angles of -5% and +5%. The positive incidence angle results in intensification of the pressure-side leg of a leading-edge horseshoe vortex, which delivers higher heat transfer along its trace. On the other hand, the negative incidence angle show an opposite tendency.

  • PDF

Numerical Analysis on Heat Transfer Characteristics of the Contoured Endwall in a Turbine Cascade (끝벽의 형상이 터빈 캐스케이드 내 열전달 특성에 미치는 영향에 관한 전산해석)

  • Lee, Wu-Sang;Yoon, Deok-Kyu;Kwang, Hyun-Ju;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.535-538
    • /
    • 2006
  • The Objective of this study is to document the three-dimensional flow in a turbine cascade with Contoured endwall in terms of Stanton number distribution to proposes an appropriate contraction ratio of endwall contouring which show the best performance. This study was numerically performed. The results show that heat transfer coefficient on the contoured endwall which has the height of 15% of the axial chord showed best performance. The numerical method and results in this study can be applied to the design of gas turbine cascade with high performance.

  • PDF

Endwall Heat (Mass) Transfer in a Turbine Cascade Under Combustor-Level High Free-Stream Turbulence (연소기 출구 난류 상태에서의 터빈 익열 끝벽 열(물질)전달 특성)

  • Jun, Sang-Bae;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.759-764
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade passage under a combustor-level high free-stream turbulence with a large length scale. Local heat (mass) transfer coefficients are measured by using the naphthalene sublimation technique. The result shows that local heat (mass) transfer on the endwall is greatly enhanced in the central region of the turbine passage, but there is no noticeable change in the local heat (mass) transfer in the region suffering severe heat load. Under the high free-stream turbulence, the local heat (mass) transfer coefficient shows more uniform distribution and its average value across the whole endwall region is increased by 26% of that at low turbulence condition. The heat (mass) transfer data on the endwall strongly supports that well-organized vortices near the endwall tends to suffer an suppression by the high free-stream turbulence.

  • PDF

Measurement of Heat Transfer and Pressure Distributions on a Gas Turbine Vane Endwall (가스터빈 베인 끝벽의 열전달 특성 및 정압분포 측정)

  • Lee, Yong-Jin;Shin, So-Min;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2006
  • Heat transfer coefficients and static pressure distributions on a gas turbine vane endwall were experimentally investigated in a 5 bladed linear cascade. The Reynolds number based on an axial chord length and the cascade exit velocity was 500,000. Both heat transfer and pressure measurements on the vane endwall were made at the two different turbulence intensity levels of 6.8% and 10.8%. Detailed heat transfer coefficient distributions on the vane endwall region were measured using a hue detection based transient liquid crystals technique. Results show various regions of high and low heat transfer coefficients on the vane endwall surface due to several types of secondary flows and vortices. Heat transfer coefficient and endwall static pressure distributions showed similar trends for both turbulence intensity, however, the averaged heat transfer coefficients for higher turbulence intensity case was higher than the lower turbulence intensity case by 15%.

  • PDF

An Experimental Investigation of the Heat Transfer Characteristics on the Endwall Surface Within the Plane Turbine Cascade (선형 터빈케스케이드 끝벽의 열전달 특성에 관한 연구)

  • 양장식;나종문;이기백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2386-2398
    • /
    • 1995
  • The paper describes the results of an experimental investigation of the heat transfer rate on the endwall surface within the plane turbine cascade passage and includes the effect of the heat transfer for the two different boundary layer thicknesses and Reynolds numbers. The limiting streamlines on the endwall surface have been visualized by the oil film method in order to compare with the endwall heat transfer. The hue-capturing method using the termochromatic liquid crystals with great spatial resolution has been used to provide the local distribution of the endwall heat transfer coefficients. Because the detailed contours of the local heat transfer coefficients over the entire endwall can be obtained from the hue-capturing method, it has been possible to obtain information on the endwall heat transfer within the plane turbine cascade passage from these heat transfer contours.

Numerical Study of Aerodynamics of Turbine Rotor with Leading Edge Modification Near Hub (허브 측 선단 수정에 따른 터빈 로터의 공력 특성에 대한 수치적 연구)

  • Kim, Dae Hyun;Lee, Won Suk;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1007-1013
    • /
    • 2013
  • This study aims to analyze the aerodynamics when the geometry of the turbine rotor is modified. The turbine used in this study is a small engine used in the APU of a helicopter. It is difficult to improve the performance of small engines owing to the structural weakness of the blade tip. Therefore, the improvement of the hub geometry is investigated in many ways. The working fluid of a turbine is a high-temperature and high-pressure gas. The heat transfer rate of the turbine surface should be considered to avoid the destruction of blade owing to the heat load. The SST turbulence model gives an excellent prediction of the aerodynamic behavior and heat transfer characteristics when the numerical simulations are compared with the experimental results. In conclusion, the aerodynamic efficiency is improved when a bulbous design is applied to the leading edge near the hub. The endwall loss is reduced by 15%.