• 제목/요약/키워드: 깊이 영상 안정화

검색결과 3건 처리시간 0.019초

효율적인 컴퓨터 비전 시스템을 위한 깊이 영상 안정화 방법의 하드웨어 구현 (Hardware Implementation of Depth Image Stabilization Method for Efficient Computer Vision System)

  • 김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제19권8호
    • /
    • pp.1805-1810
    • /
    • 2015
  • 깊이 영상에 대한 접근성이 용이해지면서 다양한 연구 분야에서 깊이 센서를 활용하고 있다. 컴퓨터 비전의 모션인식 분야에서도 깊이 영상을 이용한 연구들이 진행되고 있다. 모션을 정확히 인식하기 위해서는 안정적인 데이터를 활용할 수 있어야 하지만 깊이 센서는 노이즈를 포함한다. 이러한 노이즈는 모션 인식 시스템의 성능에 영향을 줄 수 있기 때문에 효과적으로 노이즈를 억제하는 방법이 필요하다. 본 논문에서는 하드웨어를 사용하여 깊이 센서에서 입력되는 깊이 영상에 시간 영역과 공간 영역에서 안정화를 수행함으로써 깊이 영상을 안정화하는 하드웨어를 제안한다. 바닥 제거 알고리즘에 깊이 영상 안정화를 적용하여 노이즈를 억제한 깊이 영상 안정화가 시스템의 신뢰도 향상에 기여할 수 있음을 확인하고 구현한 하드웨어를 FPGA와 APU를 이용해 실시간 동작을 확인하였으며 설계한 하드웨어는 최대 202.184MHz에서 동작할 수 있다.

관심영역 기반 와핑을 이용한 3D 동영상 안정화 기법 (ROI-Based 3D Video Stabilization Using Warping)

  • 이태환;송병철
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.76-82
    • /
    • 2012
  • 가정용 캠코더의 보급으로 인해서 손떨림이나 카메라 흔들림을 보상하기 위해 다양한 동영상 안정화 기법들이 연구되고 있다. 동영상 안정화 기법은 초기에 2차원 움직임만을 고려하였지만, 최근에는 3차원 움직임까지 고려하여서 더 좋은 성능을 얻을 수 있게 되었다. 이러한 기법들 중 가장 좋은 성능을 보이는 것으로 알려진 기법이 바로 content preserving warping을 이용한 기법인데 이것은 뛰어난 성능을 보이지만 방대한 연산량이 단점이다. 그래서, 우리는 ROI 측면에서 종래 기술 대비 동등한 화질을 보이면서도 연산량이 적은 full frame warping을 제안한다. 먼저, 목표로 하는 깊이 정보를 바탕으로 관심 영역을 설정하고, 설정된 관심 영역을 기반으로 full frame warping을 수행한다.

시차변화(Disparity Change)와 장면의 부분 분할을 이용한 SLAM 방법 (SLAM Method by Disparity Change and Partial Segmentation of Scene Structure)

  • 최재우;이철희;임창경;홍현기
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.132-139
    • /
    • 2015
  • 카메라를 이용하는 시각(visual) SLAM(Simultaneous Localization And Mapping)은 로봇의 위치 등을 파악하는데 널리 이용되고 있다. 일반적으로 시각 SLAM은 움직임이 없는 고정된 특징점을 대상으로 연속적인 시퀀스 상에서 카메라의 움직임을 추정한다. 따라서 이동하는 객체가 많이 존재하는 상황에서는 안정적인 결과를 기대하기 어렵다. 본 논문에서는 이동 객체가 많은 상황에서 스테레오 카메라를 이용한 SLAM을 안정화하는 방법을 제안한다. 먼저, 스테레오 카메라를 이용하여 깊이영상을 추출하고 옵티컬 플로우를 계산한다. 그리고 좌우 영상의 옵티컬 플로우를 이용하여 시차변화(disparity change)를 계산한다. 그리고 깊이 영상에서 사람과 같이 움직이는 객체에 대한 ROI(Region Of Interest)를 구한다. 실내 상황에서는 벽과 같은 정적인 평면들이 움직이는 영역으로 잘못 판단되는 경우가 자주 발생한다. 이런 문제점을 해결하기 위해 깊이 영상을 X-Z 평면으로 사영하고 허프(hough) 변환하여 장면을 구성하는 평면을 결정한다. 앞의 과정에서 판단된 이동 객체 중에서 벽과 같은 장면 요소를 제외한다. 제안된 방법을 통해 정적인 특징점이 요구되는 SLAM의 성능을 보다 안정화할 수 있음을 확인하였다.