This paper addresses a problem of defocus map recovery from single image. We describe a simple effective approach to estimate the spatial value of defocus blur at the edge location of the image. At first, we perform a re-blurring process using Gaussian function with input image, and calculate a gradient magnitude ratio with blurring amount between input image and re-blurred image. Then we get a full defocus map by propagating the blur amount at the edge location. Experimental result reveals that our method outperforms a reliable estimation of depth map, and shows that our algorithm is robust to noise, inaccurate edge location and interferences of neighboring edges within input image.
본 논문은 스테레오 매칭에서 깊이 맵의 정확도를 높이기 위해 폐색 영역의 매칭 오류를 줄이면서 파라메터의 수를 줄일 수 있는 신경망을 제안한다. 이미지를 이용한 상황인식을 보다 정확하게 하기 위해 많은 분야에서 스테레오 매칭기반 객체인식이 활용된다. 복잡한 이미지에 많은 객체가 있을 때 객체간의 겹침과 배경에 의한 가림으로 폐색영역이 발생하여 깊이 맵의 정확도를 낮추게 된다. 이를 해결하기 위해 context 정보를 만들어 cost volume에 결합하거나 폐색영역에 RoI를 만들어 선택하는 기존 연구 방법은 신경망의 복잡도를 높여서 학습의 어려움과 구현에 비용이 많이 들게 된다. 본 논문에서는 cost volume 생성전에 지역적인 특징추출을 보다 강화하는 depthwise seperable 신경망을 만들어 파라메터의 수를 줄이고 폐색 오류에 강인한 신경망을 제안한다. 제안한 신경망은 PSMNet에 비하여 파라메터 수를 30% 줄이면서 페색오류에서 5.3%, 테스트 손실에서 3.6% 개선하였다.
최근에는 가상 공간을 현실감 있는 영상으로 실시간 렌더링하기 위한 방법으로 모델기반 표현방법 대신 영상 기반 표현 방법을 사용하여 탐색 영상을 생성하는 연구가 활발히 진행중이다. 본 논문에서는 영상 기반 탐색 시스템을 구현하기 위해 새로운 방법인 직각 교차 실린더 매핑과 분할기반 환경 모델 링 방법을 제안한다. 직각 교차 실린더란 두 개의 실린더를 직교하여 교차된 부분만을 표현한 물체를 말한다. 직각 교차 실린더 매핑 방법은 일반적인 환경 맵에서 발생하는 왜곡 현상을 제거하고 환경 맵에서 하나의 픽셀이 차지하는 환경 영역이 거의 일정하다는 특징을 가진다. 이러한 직각 교차 실린더 매핑 방법은 고정된 시점에서 완전 시야를 갖는 영상을 얻어 낼 수 있으나 시점이 변경된 영상을 표현하기 어렵다. 이를 위해 환경을 구성하는 물체들을 기준으로 환경 맵을 분할하고 분할된 물체의 특성에 따라 깊이 값을 설정하는 영상 분할을 통한 환경 모델 링 방법을 사용한다. 이 방법은 환경 맵에 적용하기 용이하며 다중 환경 맵을 사용 시 자세한 환경 모델 링이 가능하다.
본 논문은 카메라 어레이기반 실사 다시점 입체영상을 획득·생성하기 위한 워크플로우를 제시하고 이를 검증하기 위한 실험 결과를 소개한다. 구체적으로, 액션 캠 기반 수렴형 리그 구조, 획득 동기화, 카메라 캘리브레이션, 깊이 맵 추출을 포함하는 일련의 과정 및 이에 대한 검증으로 실내외 2종의 콘텐츠의 획득 실험 결과를 기술한다.
본 논문은 3차원 디스플레이 시스템에서 카메라의 기하 정보 및 참조 영상들의 깊이 맵 정보가 주어졌을 때, 다수의 중간 시점 영상을 실시간으로 생성하는 고속 영상 합성 기법을 제안한다. 기본적으로 본 논문에서는 영상 합성 기법의 모든 과정을 GPU에 서 병렬 처리함으로써 고속화 할 수 있었다. 병렬처리를 이용한 고속화 효율을 높이기 위해 최근 NVIDIA사에서 발표한 $CUDA^{TM}$를 이용하였다. 영상 합성을 위한 모든 중간 과정을 CUDA로 처리하기 위해 병렬구조로 변환하고, GPU 상의 고속메모리의 사용을 극대화하고, 알고리즘 구현을 최적화함으로써 고속화 효율을 높일 수 있었다. 결과적으로 본 논문에서는 양안 영상과 깊이 지도를 이용하여 가로 720, 세로 480 크기의 9개의 시점 영상을 0.128초 이내에 생성할 수 있었다.
본 논문에서는 정확한 깊이를 추출하기 위해 고차 통계기반 초점 척도를 이용한 SFF(shape from focus) 알고리즘을 제시한다. 기존의 SFF기반 3차원 깊이 복원 기법들은 초점 척도로 SML(sum of modified Laplacian)을 사용하기 때문에, 성능이 영상의 특성에 크게 의존하여 초점이 정밀하거나 질감이 풍부한 영상에서만 효율적이다. 그러므로, 본 논문에서는 비교적 질감과 초점이 빈약한 영상에서도 초점 값을 추출할 수 있도록 고차 통계(HOS:higher order statistics)를 이용한 알고리즘을 제안한다. 이 초점 척도에 의해 초점 영역 맵이 생성되고 국부적으로 최적의 초점 값을 갖는 화소를 추출하기 위해 영역개선, 세선화, 모서리 검출과정이 순서적으로 적용된다. 최종적으로 추출된 점에 대해서 Delaunay 삼각화를 사용하여 3차원 모델정보를 생성한다.
자율 주행이나 CCTV와 같이 영상 처리 관련 기술들이 발전함에 따라 영상 왜곡에 대한 문제점을 개선하기 위해 단일 영상을 이용한 안개 제거 알고리즘이 연구되고 있다. 안개 밀도 예측 방법으로는 깊이 맵을 생성하여 영상의 깊이를 추정하는 방법이 있고, 깊이 맵의 학습 데이터로 다양한 안개 특징을 사용할 수 있다. 또한 안개 제거 알고리즘을 실제 기술들에 적용하기 위해 고화질 영상을 실시간으로 처리할 수 있는 하드웨어 구현은 필수적이다. 본 논문에서는 변동계수 기반의 안개 특징인 NLCV(Normalize Local Coefficient of Variation)를 하드웨어로 구현한다. 제안하는 하드웨어는 Xilinx 사의 xczu7ev-2ffvc1156을 Target device로 FPGA 구현하였다. Vivado 프로그램을 통해 합성한 결과 479.616MHz의 최대 동작 주파수를 가지며 4K UHD(3840×2160) 환경에서 실시간 처리 가능함을 보인다.
흑백 혹은 컬러 영상과 같은 2차원 정보를 사용한 얼굴 검출 알고리즘에 관한 연구가 수십 년 동안 이루어져 왔다. 최근에는 저가 range 센서가 개발되어, 이를 통해 3차원 정보 (깊이 정보: 카메라와 물체사이의 거리를 나타냄)를 손쉽게 이용함으로써 얼굴의 특징을 높은 신뢰도로 추출하는 것이 가능해졌다. 대부분 사람 얼굴에는 3차원적인 얼굴의 구조적인 특징이 있다. 본 논문에서는 흑백 영상과 깊이 영상을 사용하여 얼굴을 검출하는 알고리즘을 제안한다. 처음에는 흑백 영상에 adaboost를 적용하여 얼굴 후보 영역을 검출한다. 얼굴 후보 영역의 위치에 대응되는 깊이 영상에서의 얼굴 후보 영역을 추출한다. 추출된 영역의 크기를 $5{\times}5$ 영역으로 분할하여 깊이 값의 평균값을 구한다. 깊이 값들의 평균값들 간에 순위를 매김으로써 블록 순위 패턴이 생성된다. 얼굴 후보 영역의 블록 순위 패턴과 학습 데이터를 사용하여 미리 학습된 템플릿 패턴을 매칭함으로써 최종 얼굴 영역인지 아닌지를 판단할 수 있다. 제안하는 방법의 성능을 Kinect sensor로 취득한 실제 영상으로 실험하였다. 실험 결과 true positive를 잘 보존하면서 많은 false positive들을 효과적으로 제거하는 것을 보여준다.
최근 MPEG-I (Immersive) 그룹에서는 몰입형 비디오(Immersive Video)에 대한 표준화 프로젝트를 통해 압축 성능 탐색을 진행하고 있다. MIV(MPEG Immersive Video) 표준 기술은 다수의 시점 영상과 깊이 맵을 통한 깊이 맵 기반 이미지 렌더링(DIBR)을 바탕으로 제한적인 6DoF을 제공하고자 하는 기술이다. 현재 MIV에서는 바탕 시점(Basic View)과 각 시점의 고유한 영상 정보를 패치 단위로 모아둔 추가 시점(Additional View)으로 처리하는 모델을 채택하고 있다. MIV에서 생성된 아틀라스는 포함되는 시점의 성격에 따라 다른 영상의 특성을 나타내어 비디오 코덱의 압축 효율에 대한 고찰이 필요하다. 따라서 본 논문에서는 다양한 시점과 패치들이 반복되는 패턴에 착안하여 화면 내 블록 카피(IBC: intra block copy) 등의 압축 기법이 포함된 스크린 콘텐츠 코딩 툴에 대한 성능 비교 분석을 진행하여 복원 영상에서 최대 -15.74% Peak Signal-to-Noise Ratio (PSNR) 관점에서의 부호화 성능 향상을 제공하였다.
2017년 현재 수많은 VR콘텐츠가 소개됨으로써 대중들의 VR에 대한 관심과 다양한 기술이 발전을 하고 있다. VR 콘텐츠는 $360^{\circ}$실사 촬영 제작환경의 어려움으로 인해 게임과 인터렉티브라는 장르에 편중되어 있는 것 또한 사실이다. 실사촬영에서의 조명은 영상 미학적 차원에서 중요한 요소 중에 하나이며 특정 캐릭터의 내적 표현 부분에서도 조명의 역할이 매우 중요하다. 실사 기반의 $360^{\circ}$VR콘텐츠는 조명설정에 따라 노출에 대한 부분과 제작환경의 어려움으로 인해 많은 문제점을 가지고 있다. 따라서 본 논문은 실사 촬영된 영상데이터를 기반으로 리라이팅 기술을 이용하여 실사 이미지의 양안시차에 3차원 정보 값을 생성한다. 생성된 3차원 정보 값은 뎁스 맵으로 변환하는 기술과 3D 공간에서 형성된 면에 가상의 조명을 설치하여 리라이팅 기술을 접목한다. 실제 조명과 가상의 조명의 영상데이터의 결과 이미지를 비교분석하여 리라이팅의 기술을 VR제작 파이프라인에 적용하여 조명 노출에 대한 문제점을 해결하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.