• 제목/요약/키워드: 깊이맵 생성

검색결과 83건 처리시간 0.026초

선명도를 향상시킨 고해상도 깊이맵 생성 (Generation of High-Resolution Depth Map with Improved Sharpness)

  • 장성은;김만배
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.321-322
    • /
    • 2012
  • 본 논문은 선명도를 향상시킨 고해상도 깊이맵을 생생 방법을 제안한다. 현재 저해상도 깊이맵으로부터 생성되는 고해상도 깊이맵은 원 깊이맵과 유사도를 높이는 것에 초점이 맞춰져 있다. 본 논문은 기존 보간법들을 바탕으로 깊이맵에 고주파 성분을 사용하여 깊이맵의 선명도를 증가시킨다. 제안 방법은 저해상도 깊이맵으로부터 고주파 데이터를 생성 후, 깊이맵에 고주파 성분을 적용한 다음에 보간을 통하여 깊이맵을 고해상도 깊이맵으로 변환한다.

  • PDF

복합형 카메라 시스템에서 관심영역이 향상된 고해상도 깊이맵 생성 방법 (Generation of ROI Enhanced High-resolution Depth Maps in Hybrid Camera System)

  • 김성열;호요성
    • 방송공학회논문지
    • /
    • 제13권5호
    • /
    • pp.596-601
    • /
    • 2008
  • 본 논문은 저해상도의 깊이 카메라와 고해상도의 양안식 카메라를 결합한 복합형 카메라 시스템에서 관심영역(region of interest, ROI)이 향상된 깊이맵을 생성하는 새로운 방법을 제안한다. 제안하는 방법은 깊이 카메라로 획득한 깊이 정보를 3차원 워핑(warping)하여 좌영상의 ROI 깊이맵을 생성한다. 그런 다음, 양안식 카메라로 획득한 좌우영상의 배경 영역을 스테레오 정합하여 좌영상의 배경 깊이맵을 생성한다. 최종적으로, ROI 깊이맵과 배경 깊이맵을 결합하여 최종 깊이맵을 생성한다. 제안하는 방법으로 생성한 고해상도 깊이맵은 기존의 스테레오 정합 방법보다 ROI에 정확한 깊이 정보를 제공한다.

합성곱 신경망을 이용한 깊이맵 생성 (Depth map generation using convolutional neural network)

  • 김홍진;김만배
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 추계학술대회
    • /
    • pp.34-35
    • /
    • 2017
  • 본 논문에서는 영상으로부터 생성된 깊이맵을 합성곱 신경망(CNN)으로 재생성하는 방법을 제안한다. 합성곱 신경망은 영상인식, 영상분류에 좋은 성능을 보여주는데, 이 기술을 깊이맵 생성에 활용하여 기 제작된 깊이맵 생성 기법을 간단한 합성곱 신경망으로 구현하고자 한다. 성능 실험에서는 10개의 비디오 세트에 제안 방법을 적용한 결과, 만족스러운 결과를 얻었다.

  • PDF

거리변환을 이용하는 고해상도 깊이맵 생성 (Generation of high resolution depth map using distance transform)

  • 장성은;김만배
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.112-113
    • /
    • 2012
  • 최근 카메라와 디스플레이의 발전에 따라 고해상도 영상이 요구되고 있다. 하지만 깊이를 획득하는 깊이센서 장치는 색상 영상에 미치지 못하는 저해상도 깊이맵을 주로 제공한다. 이에 따라 저해상도의 깊이맵을 고해상도 깊이맵으로 상향변환이 필요하다. 하지만 대부분의 보간법들은 edge에서 blur가 발생하는 경우가 있다. 따라서 본 논문에서는 distance transform(DT)를 이용하여 edge의 선명도를 향상시킨 고해상도 깊이맵 생성 방법을 제안한다.

  • PDF

깊이맵 생성 알고리즘의 합성곱 신경망 구현 (Implementing a Depth Map Generation Algorithm by Convolutional Neural Network)

  • 이승수;김홍진;김만배
    • 방송공학회논문지
    • /
    • 제23권1호
    • /
    • pp.3-10
    • /
    • 2018
  • 깊이맵은 현재 다양한 분야에서 활용되고 있다. 이러한 깊이맵을 인공 신경망으로 생성하는 연구가 최근 관심을 받고 있다. 본 논문에서는 기존의 기 제작된 깊이맵 생성 알고리즘을 합성곱 신경망으로 구현할 수 있는지에 대한 타당성을 검증한다. 먼저 깊이맵은 관심맵과 운동 히스토리 영상의 가중치 합으로 얻는다. 실험영상과 깊이맵을 합성곱 신경망의 입력과 출력으로 하여, 신경망을 학습시킨다. 정성적, 정량적 실험 결과는 제안한 합성곱 신경망이 깊이맵 생성 방법을 대체할 수 있다는 것을 보여준다.

계위 공간을 이용한 고품질 3차원 비디오 생성 방법 -다단계 계위공간 개념을 이용해 깊이맵의 경계영역을 정제하는 고화질 복합형 카메라 시스템과 고품질 3차원 스캐너를 결합하여 고품질 깊이맵을 생성하는 방법- (High-qualtiy 3-D Video Generation using Scale Space)

  • 이은경;정영기;호요성
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.620-624
    • /
    • 2009
  • 본 논문은 고화질(high definition, HD) 복합형 카메라 시스템과 고품질(high-quality) 3차원 스캐너를 결합하여 다시점 비디오와 그에 상응하는 다시점 깊이맵을 생성하는 시스템을 제안한다. 복합형 카메라 시스템과 3차원 스캐너를 이용해 3차원 비디오를 생성하기 위해서는, 우선 움직임이 없는 배경영역에 대한 깊이정보를 고품질 3차원 스캐너를 이용해 미리 획득하고, 동적으로 움직이는 전경영역에 대해서는 다시점 카메라와 깊이 카메라를 결합한 복합형 카메라 시스템을 이용해 다시점 비디오와 깊이맵을 획득한다. 그리고 3차원 스캐너와 깊이카메라를 통해 획득한 깊이정보를 이용해 3차원 워핑(warping)을 적용하여 각 다시점 카메라를 위한 초기 깊이정보를 예측한다. 초기 깊이정보를 이용해 다시점 깊이를 예측하는 것은 다시점 카메라의 각 시점에서의 초기 깊이맵을 계산하기 위한 것이다. 고화질의 다시점 깊이맵을 생성하기 위해서 belief propagation 방법을 이용하여 초기 깊이맵을 정제한다. 마지막으로, 전경영역의 경계선 영역의 불규칙적인 깊이맵을 정제하기 위해 전경영역의 외곽선 정보를 추출하여 생성된 깊이맵의 경계선 영역을 다시한번 정제한다. 제안한 3차원 스캐너와 복합형 카메라를 결합한 시스템은 기존의 깊이맵 예측 방법보다 정확한 다시점 깊이맵을 포함하는 3차원 비디오를 생성할 수 있었으며, 보다 자연스러운 3차원 영상을 생성할 수 있었다.

  • PDF

자율주행을 위한 이중초점 스테레오 카메라 시스템을 이용한 깊이 영상 생성 방법 (Depth Generation using Bifocal Stereo Camera System for Autonomous Driving)

  • 이은경
    • 한국전자통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1311-1316
    • /
    • 2021
  • 본 논문에서는 이중시점 스테레오 이미지와 그에 상응하는 깊이맵을 생성하기 위해 서로 다른 초점거리를 가지고 있는 두 카메라를 결합한 이중시점 스테레오 카메라 시스템을 제안한다. 제안한 이중초점 스테레오 카메라 시스템을 이용해 깊이맵을 생성하기 위해서는 먼저 서로 다른 초점을 가진 두 카메라에 대한 카메라 정보를 추출하기 위한 카메라 보정(Camera Calibration)을 수행한다. 카메라 파라미터를 이용해 깊이맵 생성을 위한 공통 이미지 평면을 생성하고 스테레오 이미지 정렬화(Image Rectification)를 수행한다. 마지막으로 정렬화된 스테레오 이미지를 이용하여 깊이맵을 생성하였다. 본 논문에서는 깊이맵을 생성하기 위해서 SGM(Semi-global Matching) 알고리즘을 사용하였다. 제안한 이중초점 스테레오 카메라 시스템은 서로 다른 초점 카메라들이 수행해야 하는 기능을 수행함과 동시에 두 카메라를 이용한 스테레오 정합(Stereo Matching)을 통해서 현재 주행 중인 환경에서의 차량, 보행자, 장애물과의 거리 정보까지 생성할 수 있어서 보다 안전한 자율주행 차량 설계를 가능하게 하였다.

저해상도 깊이맵으로부터 고해상도 깊이맵의 생성 (Generating High Resolution Depth Map from Low Resolution Depth Map)

  • 장성은;김만배
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.137-138
    • /
    • 2011
  • 최근 깊이센서가 컴퓨터비전 등의 영상처리 분야에서 다양하게 활용되고 있다. 그러나 깊이센서에서 생성된 깊이맵의 해상도가 낮기 때문에 고해상도로 상향변환이 필요하다. 현재까지 저해상도의 깊이맵을 고해상도의 깊이맵으로 변환하는 방법들이 많이 제안되었다. 하지만 이러한 방법들은 객체의 에지 개선에만 국한되어 있다. 따라서 본 논문에서는 객체의 에지 뿐만아니라, 객체의 내부를 개선하는 방법을 제안한다. 제안방법은 기존에서 활용되어 온 보간법들에 고주파 성분을 적용하여 개선된 고해상도 깊이맵을 얻는다.

  • PDF

운동축척을 이용한 모션 깊이맵 생성 (Motion Depth Map Generation using Motion History)

  • 김원회;김만배
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.142-143
    • /
    • 2016
  • 본 논문에서는 애니메이션, 드라마, 영화 등 영상으로 제작된 콘텐츠를 OpenGL를 사용하여 3D영상으로 재구성한다. 먼저 현재영상과 이전영상의 움직임의 차이로부터 운동 축적 데이터를 사용하여 모션 깊이맵을 생성한다. 그 깊이맵을 사용하여 OpenGL에서 사용하는 텍스쳐 맵핑으로 영상을 출력하고 3D 영상을 구현하기 위해 좌영상과 우영상을 생성하여 3D 입체영상을 만든다.

  • PDF

영역분할과 움직임 정보를 이용한 깊이맵 생성 기법 (Depth map generation method using segmentation and motion information)

  • 김수동;안재우;서영호;김동욱;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.116-118
    • /
    • 2010
  • 본 논문에서는 영역 분할과 영상의 움직임 정보를 이용한 깊이맵 생성에 관한 기법을 제안하였다. 2D/3D 변환 알고리즘에서 2차원 영상에서 얻은 깊이 정보는 2차원 영상을 3차원 영상으로 변환 가능하게 하는 핵심 기술이 된다. 영역을 분할하고 계산되어진 움직임 값 (intensity)을 분할된 각 영역에 부여함으로서 깊이맵을 얻을 수 있다. 본 논문에서는 초기 단계에서 영역을 분할한 뒤, 입력 영상을 그룹화 하여 양방향 탐색을 통한 움직임 추정 연산을 수행토록 하여 보다 정확한 깊이 정보를 획득하고, 최종적으로 얻은 결과에 각 화소에 해당 되는 확률적 통계에 의한 후처리 기법을 사용하였다. 보다 정확한 깊이정보를 영역별로 지정하고, 후처리 기법을 사용함에 따라 보다 신뢰도 높은 깊이맵 영상을 생성할 수 있었다.

  • PDF