This study examined the influence of lexical factors on verbal Eojeol recognition. To meet the goal, forty-five L2 Korean learners and twenty-two Korean native speakers took Eojeol decision tasks measured with the lexical factors such as 'number of strokes', 'number of consonants and vowels', 'number of syllables', 'number of morphemes', 'whole Eojeol frequency', 'root frequency', 'first-syllable-sharing frequency', and 'number of dictionary meanings.' As a result, 'whole Eojeol frequency' was the most effective factor to predict Eojeol recognition reaction time for native speakers and L2 learners, which supports the full-list model. Other lexical factors influencing Eojeol recognition reaction time in L2 learners were different following their proficiency level.
대화형 관계 추출의 목표는 주어진 대화에서 두 개체 간의 관계를 식별하는 것이다. 대화 중에 화자는 개체 및 관계와 관련이 있는 단서인 트리거를 통해 특정 개체 간 관계를 식별하는 것에 힌트를 얻을 수 있다. 그러나 데이터에 대해 항상 트리거 정보가 존재하는 것이 아니므로 트리거를 활용해 성능을 향상시키는 것은 어렵다. 본 논문은 이 문제점을 해소하기 위해 대화, 개체, 관계 중심으로 트리거 생성 모델을 학습하고, 이를 통해 생성된 트리거를 대화형 관계 추출에 학습하여 관계 식별에 효과적인 성능 향상을 보이는 접근법을 제안한다. 제안하는 접근법은 대화형 관계 추출 태스크에서 기존 성능과 비교한 결과 Dev, Test에서 각각 F1 19.74%p, F1 15.53%p 의 성능 향상을 보였다.
본 논문에서는 잡음 환경에서 취득된 음성 신호에서 잡음을 제거하기 위한 방법으로 사용되는 이진 마스크 분류 모델의 적응과정에 대해 다루고자 한다. 기존 연구결과에 의하면, 잡음 환경 데이터에 이진 마스크 기법을 적용하면 음성 명료도를 향상시킬 수 있다고 알려져 있다. 하지만 이진 마스크 분류 모델 학습 시 테스트 환경 데이터가 포함되어야 한다는 단점을 안고 있다. 본 논문에서는 새로운 잡음 환경에서 이진 마스크 분류 모델을 적응하기 위해, 음성 인식에서 널리 사용되는 화자 적응 기법인 eigenvoice 방법을 적용하고자 한다. 실험결과에서는 모델 적응에 사용되는 데이터량에 따른 성능을 정검출율과 오검출율 관점에서 평가하였고, 그 결과 새로운 잡음 환경에서 데이터량을 증가시켜 모델을 적응함으로써 향상된 성능을 나타냄을 확인할 수 있었다.
음성 및 문자를 통한 컴퓨터와의 정보 교환을 위한 통합 사용자 인터페이스 (Intelligent Man- Machine interface) 시스템의 일환으로 한국어 단모음의 인식을 위한 시스템을 인공 신경망 모델을 사용하여 구현하였으며 인식시스템의 상위 접속부에 필요한 단어 인식 모듈에 있어서의 인지 실험도 행하였다. 모음인식의 입력으로는 제1, 제2, 제3 포르만트가 사용되었으며 실험대상은 한국어의 [아, 어, 오, 우, 으, 이, 애, 에]의 8 개의 단모음으로 하였다. 사용한 인공 신경망 모델은 Multilayer Perceptron 이며, 학습 규칙은 Generalized Delta Rule 이다. 1 인의 남성 화자에 대하여 약 94%의 인식율을 나타내었다. 그리고 음성 인식시의 인지 현상 실험을 위하여 약 20개의 단어를 인공신경망의 어휘레벨에 저장하여 음성의 왜곡, 인지시의 lexical 영향, categorical percetion등을 실험하였다. 이때의 인공 신경망 모델은 Interactive Activation and Competition Model을 사용하였으며, 음성 입력으로는 가상의 음성 피쳐 데이타를 사용하였다.
In this paper, we propose a method for optimizing a multiple pronunciation dictionary used for modeling pronunciation variations of non-native speech. The proposed method removes some confusable pronunciation variants in the dictionary, resulting in a reduced dictionary size and less decoding time for automatic speech recognition (ASR). To this end, a confusability measure is first defined based on the Levenshtein distance between two different pronunciation variants. Then, the number of phonemes for each pronunciation variant is incorporated into the confusability measure to compensate for ASR errors due to words of a shorter length. We investigate the effect of the proposed method on ASR performance, where Korean is selected as the target language and Korean utterances spoken by Chinese native speakers are considered as non-native speech. It is shown from the experiments that an ASR system using the multiple pronunciation dictionary optimized by the proposed method can provide a relative average word error rate reduction of 6.25%, with 11.67% less ASR decoding time, as compared with that using a multiple pronunciation dictionary without the optimization.
본 논문에서는 모바일 환경에서 고립단어 음성인식을 할 경우 화자종속 방법을 이용하여 성능을 높이는 사용자 적응형 후처리 방법을 제안한다. 이 방법은 인식기의 정확한 인식 결과를 위한 추가적인 처리들로 구성된다. 즉 인식기의 출력과 정확한 최종 결과들 간의 관계를 학습하여 이를 잘못된 인식기의 출력을 수정하는 데에 사용한다. 학습에는 패턴인식에 강인한 다층 퍼셉트론을 사용하며 학습 시간을 고려하여 모델을 세분화하고 동적으로 동작할 수 있도록 구현한다. 이 결과 인식기의 오류에 대해 41%를 수정하는 성과(오류 수정률: 41%)를 보였다.
In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.
본 논문에서는 한국어 연결 숫자음 인식을 위한 최대 사후 eigenvoice을 사용한 자기적응 기법을 제안한다. 제안된 최대 사후 eigenvoice 기법은 eigenvoice 계수에 대한 확률 밀도 함수를 가정함으로 구성된다. 제안된 알고리즘은 기존 eigenvoice 추정 과정에 선 분포 모델을 포함하는 일반적인 해를 제공하는 구조를 갖는다. 인식할 한 문장만을 사용하는 자기 적응 시스템을 위해 매우 강인한 특성을 갖는 최대 사후 eigenvoice 적응 기법을 사용하였다. 한국어 연결 숫자음에 대한 일련의 자기 적응 실험결과 제안된 알고리즘의 성능은 매우 적은 량의 적응 데이터에 대해 기존 eigenvoice 알고리즘에 비해 우수한 성능을 나타냈었다.
본 논문에서는 화자독립으로 100단어를 인식할 수 있는 실시간 음성인식 다이얼링 시스템의 개발에 대하여 기술하였다. 이 시스템에서 음성인식 알고리즘은 전화선 인터페이스를 갖춘 DSP 보드상에 구현되었으며, IBM PC AT/486 상에서 작동된다. DSP 보드에서는 단어의 시작점이 검출된 후에 특징추출, 벡터양자화 그리고 끝점검출 과정이 실시간으로 10 msec의 프레임 구간마다 수행된다. 또한, 본 시스템에서는 인식시간과 기억용량을 줄이기 위해 VQ 코드북의 크기와 끝점검출 과정을 최적화하였다. 본 실시간 음성인식 다이얼링 시스템은 데모 시스템으로 구현되어 대전엑스포‘93에서 한국이동통신의 MOBILAB 내에 전시되었다.
The purposes of this paper is to study the characteristics of compared to the speakers voice without depression and speakers with depression, and to propose a objective method for the measurement of the therapeutic effects as well as for diagnostics of depression based on the characteristics. The voice samples obtained from 11 female speakers with depression, aged from 20 to 40, diagnosed as having major depressive disorder by an psychiatrist were compared with those from 12 normal controls with matched sex, age, height, weight, education, smoking, and drinking. The voice samples are taken by a portable digital recorder(TASCAM DR-07, Japan) and analysed using the MDVP(Multi-Dimentional Voice Program) software module from CSL(Computerized Speech Lab, kay elemetrics, co, model 4100). The result of the investigation are as following. First, the average speaking fundamental frequency and loudness range of the speakers with depression group was statistically significantly lower than that of the control group. The pitch range of the control group was rather higher than that of the speakers with depression group, but without statistical significance. Overall speech rates have no statistical difference between two groups. Second, the average speaking fundamental frequency and loudness range have statistically significant negative correlation with Beck Depression Inventory, i. e. more severe depression exhibits lower average speaking fundamental frequency and loudness range. Other vocal parameters such as pitch range and overall speech rate have no statistically meaningful correlations with Beck Depression Inventory.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.