• 제목/요약/키워드: 김화자

검색결과 184건 처리시간 0.027초

한국어 용언 어절 재인에 미치는 어휘 변인의 영향 -모어 화자와 고급 학습자의 예- (The Influence of Lexical Factors on Verbal Eojeol Recognition: Evidence from L1 Korean Speakers and L2 Korean Learners)

  • 김영주;이선진;이은하;남기춘;전현애;이선영
    • 한국어교육
    • /
    • 제29권3호
    • /
    • pp.25-53
    • /
    • 2018
  • This study examined the influence of lexical factors on verbal Eojeol recognition. To meet the goal, forty-five L2 Korean learners and twenty-two Korean native speakers took Eojeol decision tasks measured with the lexical factors such as 'number of strokes', 'number of consonants and vowels', 'number of syllables', 'number of morphemes', 'whole Eojeol frequency', 'root frequency', 'first-syllable-sharing frequency', and 'number of dictionary meanings.' As a result, 'whole Eojeol frequency' was the most effective factor to predict Eojeol recognition reaction time for native speakers and L2 learners, which supports the full-list model. Other lexical factors influencing Eojeol recognition reaction time in L2 learners were different following their proficiency level.

대화형 관계 추출 태스크에 최적화된 트리거 생성 방법론 (Methodology of Trigger Generation optimized for Dialogue Relation Extraction task)

  • 김경민;손준영;김진성;조재춘;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.374-378
    • /
    • 2022
  • 대화형 관계 추출의 목표는 주어진 대화에서 두 개체 간의 관계를 식별하는 것이다. 대화 중에 화자는 개체 및 관계와 관련이 있는 단서인 트리거를 통해 특정 개체 간 관계를 식별하는 것에 힌트를 얻을 수 있다. 그러나 데이터에 대해 항상 트리거 정보가 존재하는 것이 아니므로 트리거를 활용해 성능을 향상시키는 것은 어렵다. 본 논문은 이 문제점을 해소하기 위해 대화, 개체, 관계 중심으로 트리거 생성 모델을 학습하고, 이를 통해 생성된 트리거를 대화형 관계 추출에 학습하여 관계 식별에 효과적인 성능 향상을 보이는 접근법을 제안한다. 제안하는 접근법은 대화형 관계 추출 태스크에서 기존 성능과 비교한 결과 Dev, Test에서 각각 F1 19.74%p, F1 15.53%p 의 성능 향상을 보였다.

  • PDF

Eigenvoice를 이용한 이진 마스크 분류 모델 적응 방법 (Eigenvoice Adaptation of Classification Model for Binary Mask Estimation)

  • 김기백
    • 방송공학회논문지
    • /
    • 제20권1호
    • /
    • pp.164-170
    • /
    • 2015
  • 본 논문에서는 잡음 환경에서 취득된 음성 신호에서 잡음을 제거하기 위한 방법으로 사용되는 이진 마스크 분류 모델의 적응과정에 대해 다루고자 한다. 기존 연구결과에 의하면, 잡음 환경 데이터에 이진 마스크 기법을 적용하면 음성 명료도를 향상시킬 수 있다고 알려져 있다. 하지만 이진 마스크 분류 모델 학습 시 테스트 환경 데이터가 포함되어야 한다는 단점을 안고 있다. 본 논문에서는 새로운 잡음 환경에서 이진 마스크 분류 모델을 적응하기 위해, 음성 인식에서 널리 사용되는 화자 적응 기법인 eigenvoice 방법을 적용하고자 한다. 실험결과에서는 모델 적응에 사용되는 데이터량에 따른 성능을 정검출율과 오검출율 관점에서 평가하였고, 그 결과 새로운 잡음 환경에서 데이터량을 증가시켜 모델을 적응함으로써 향상된 성능을 나타냄을 확인할 수 있었다.

통합 사용자 인터페이스에 관한 연구 : 인공 신경망 모델을 이용한 한국어 단모음 인식 및 음성 인지 실험 (A Study on the Intelligent Man-Machine Interface System: The Experiments of the Recognition of Korean Monotongs and Cognitive Phenomena of Korean Speech Recognition Using Artificial Neural Net Models)

  • 이봉규;김인범;김기석;황희융
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1989년도 한글날기념 학술대회 발표논문집
    • /
    • pp.101-106
    • /
    • 1989
  • 음성 및 문자를 통한 컴퓨터와의 정보 교환을 위한 통합 사용자 인터페이스 (Intelligent Man- Machine interface) 시스템의 일환으로 한국어 단모음의 인식을 위한 시스템을 인공 신경망 모델을 사용하여 구현하였으며 인식시스템의 상위 접속부에 필요한 단어 인식 모듈에 있어서의 인지 실험도 행하였다. 모음인식의 입력으로는 제1, 제2, 제3 포르만트가 사용되었으며 실험대상은 한국어의 [아, 어, 오, 우, 으, 이, 애, 에]의 8 개의 단모음으로 하였다. 사용한 인공 신경망 모델은 Multilayer Perceptron 이며, 학습 규칙은 Generalized Delta Rule 이다. 1 인의 남성 화자에 대하여 약 94%의 인식율을 나타내었다. 그리고 음성 인식시의 인지 현상 실험을 위하여 약 20개의 단어를 인공신경망의 어휘레벨에 저장하여 음성의 왜곡, 인지시의 lexical 영향, categorical percetion등을 실험하였다. 이때의 인공 신경망 모델은 Interactive Activation and Competition Model을 사용하였으며, 음성 입력으로는 가상의 음성 피쳐 데이타를 사용하였다.

  • PDF

타언어권 화자 음성 인식을 위한 혼잡도에 기반한 다중발음사전의 최적화 기법 (Optimizing Multiple Pronunciation Dictionary Based on a Confusability Measure for Non-native Speech Recognition)

  • 김민아;오유리;김홍국;이연우;조성의;이성로
    • 대한음성학회지:말소리
    • /
    • 제65호
    • /
    • pp.93-103
    • /
    • 2008
  • In this paper, we propose a method for optimizing a multiple pronunciation dictionary used for modeling pronunciation variations of non-native speech. The proposed method removes some confusable pronunciation variants in the dictionary, resulting in a reduced dictionary size and less decoding time for automatic speech recognition (ASR). To this end, a confusability measure is first defined based on the Levenshtein distance between two different pronunciation variants. Then, the number of phonemes for each pronunciation variant is incorporated into the confusability measure to compensate for ASR errors due to words of a shorter length. We investigate the effect of the proposed method on ASR performance, where Korean is selected as the target language and Korean utterances spoken by Chinese native speakers are considered as non-native speech. It is shown from the experiments that an ASR system using the multiple pronunciation dictionary optimized by the proposed method can provide a relative average word error rate reduction of 6.25%, with 11.67% less ASR decoding time, as compared with that using a multiple pronunciation dictionary without the optimization.

  • PDF

모바일 기기를 위한 음성인식의 사용자 적응형 후처리 (User Adaptive Post-Processing in Speech Recognition for Mobile Devices)

  • 김영진;김은주;김명원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권5호
    • /
    • pp.338-342
    • /
    • 2007
  • 본 논문에서는 모바일 환경에서 고립단어 음성인식을 할 경우 화자종속 방법을 이용하여 성능을 높이는 사용자 적응형 후처리 방법을 제안한다. 이 방법은 인식기의 정확한 인식 결과를 위한 추가적인 처리들로 구성된다. 즉 인식기의 출력과 정확한 최종 결과들 간의 관계를 학습하여 이를 잘못된 인식기의 출력을 수정하는 데에 사용한다. 학습에는 패턴인식에 강인한 다층 퍼셉트론을 사용하며 학습 시간을 고려하여 모델을 세분화하고 동적으로 동작할 수 있도록 구현한다. 이 결과 인식기의 오류에 대해 41%를 수정하는 성과(오류 수정률: 41%)를 보였다.

화자인식을 위한 주파수 워핑 기반 특징 및 주파수-시간 특징 평가 (Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition)

  • 최영호;반성민;김경화;김형순
    • 말소리와 음성과학
    • /
    • 제7권1호
    • /
    • pp.3-10
    • /
    • 2015
  • In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.

한국어 연결 숫자음 인식을 일한 최대 사후 Eigenvoice에 근거한 자기적응 기법 (Self-Adaptation Algorithm Based on Maximum A Posteriori Eigenvoice for Korean Connected Digit Recognition)

  • 김동국;전형배
    • 한국음향학회지
    • /
    • 제23권8호
    • /
    • pp.590-596
    • /
    • 2004
  • 본 논문에서는 한국어 연결 숫자음 인식을 위한 최대 사후 eigenvoice을 사용한 자기적응 기법을 제안한다. 제안된 최대 사후 eigenvoice 기법은 eigenvoice 계수에 대한 확률 밀도 함수를 가정함으로 구성된다. 제안된 알고리즘은 기존 eigenvoice 추정 과정에 선 분포 모델을 포함하는 일반적인 해를 제공하는 구조를 갖는다. 인식할 한 문장만을 사용하는 자기 적응 시스템을 위해 매우 강인한 특성을 갖는 최대 사후 eigenvoice 적응 기법을 사용하였다. 한국어 연결 숫자음에 대한 일련의 자기 적응 실험결과 제안된 알고리즘의 성능은 매우 적은 량의 적응 데이터에 대해 기존 eigenvoice 알고리즘에 비해 우수한 성능을 나타냈었다.

이산 HM을 이용한 실시간 음성인식 다이얼링 시스템 개발 (Development of a Read-time Voice Dialing System Using Discrete Hidden Markov Models)

  • 이세웅;최승호;이미숙;김홍국;오광철;김기철;이황수
    • The Journal of the Acoustical Society of Korea
    • /
    • 제13권1E호
    • /
    • pp.89-95
    • /
    • 1994
  • 본 논문에서는 화자독립으로 100단어를 인식할 수 있는 실시간 음성인식 다이얼링 시스템의 개발에 대하여 기술하였다. 이 시스템에서 음성인식 알고리즘은 전화선 인터페이스를 갖춘 DSP 보드상에 구현되었으며, IBM PC AT/486 상에서 작동된다. DSP 보드에서는 단어의 시작점이 검출된 후에 특징추출, 벡터양자화 그리고 끝점검출 과정이 실시간으로 10 msec의 프레임 구간마다 수행된다. 또한, 본 시스템에서는 인식시간과 기억용량을 줄이기 위해 VQ 코드북의 크기와 끝점검출 과정을 최적화하였다. 본 실시간 음성인식 다이얼링 시스템은 데모 시스템으로 구현되어 대전엑스포‘93에서 한국이동통신의 MOBILAB 내에 전시되었다.

  • PDF

우울증 화자 음성의 음향음성학적 특성 (Vocal acoustic characteristics of speakers with depression)

  • 백연숙;김세주;김은연;최예린
    • 말소리와 음성과학
    • /
    • 제4권1호
    • /
    • pp.91-98
    • /
    • 2012
  • The purposes of this paper is to study the characteristics of compared to the speakers voice without depression and speakers with depression, and to propose a objective method for the measurement of the therapeutic effects as well as for diagnostics of depression based on the characteristics. The voice samples obtained from 11 female speakers with depression, aged from 20 to 40, diagnosed as having major depressive disorder by an psychiatrist were compared with those from 12 normal controls with matched sex, age, height, weight, education, smoking, and drinking. The voice samples are taken by a portable digital recorder(TASCAM DR-07, Japan) and analysed using the MDVP(Multi-Dimentional Voice Program) software module from CSL(Computerized Speech Lab, kay elemetrics, co, model 4100). The result of the investigation are as following. First, the average speaking fundamental frequency and loudness range of the speakers with depression group was statistically significantly lower than that of the control group. The pitch range of the control group was rather higher than that of the speakers with depression group, but without statistical significance. Overall speech rates have no statistical difference between two groups. Second, the average speaking fundamental frequency and loudness range have statistically significant negative correlation with Beck Depression Inventory, i. e. more severe depression exhibits lower average speaking fundamental frequency and loudness range. Other vocal parameters such as pitch range and overall speech rate have no statistically meaningful correlations with Beck Depression Inventory.