• Title/Summary/Keyword: 기후학적평균

Search Result 197, Processing Time 0.02 seconds

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.

Retrieval of Pollen Optical Depth in the Local Atmosphere by Lidar Observations (라이다를 이용한 지역 대기중 꽃가루의 광학적 두께 산출)

  • Noh, Young-Min;Lee, Han-Lim;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Air-borne pollen, biogenically created aerosol particle, influences Earth's radiative balance, visibility impairment, and human health. The importance of pollens has resulted in numerous experimental studies aimed at characterizing their dispersion and transport, as well as health effects. There is, however, limited scientific information concerning the optical properties of airborne pollen particles contributing to total ambient aerosols. In this study, for the first time, optical characteristics of pollen such as aerosol backscattering coefficient, aerosol extinction coefficient, and depolarization ratio at 532 nm and their effect to the atmospheric aerosol were studied by lidar remotes sensing technique. Dual-Lidar observations were carried out at the Gwangju Institute of Science & Technology (GIST) located in Gwagnju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$) for a spring pollen event from 5 to 7 May 2009. The pollen concentration was measured at the rooftop of Gwangju Bohoon hospital where the building is located 1.0 km apart from lidar site by using Burkard trap sampler. During intensive observation period, high pollen concentration was detected as 1360, 2696, and $1952m^{-3}$ in 5, 6, and 7 May, and increased lidar return signal below 1.5km altitude. Pollen optical depth retrieved from depolarization ratio was 0.036, 0.021, and 0.019 in 5, 6, and 7 May, respectively. Pollen particles mainly detected in daytime resulting increased aerosol optical depth and decrease of Angstrom exponent.

Interdecadal Variation of Tropical Cyclone Genesis Frequency over the Western North Pacific (북서태평양에서 열대 저기압 발생빈도의 십년간 변동 특성)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Park, Jong-Kil
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.31-39
    • /
    • 2009
  • This study has found that there is a reverse phase with interdecadal variation in temporal variations of tropical cyclone (TC) genesis frequency (TCGF) between Northwest sector and Southeast sector, based on climatological mean tropical cyclone genesis location over the western North Pacific. The TCGF in the Northwest sector has been increased since the mid 1980s (1986-2005), while TCGF in the Southeast sector was higher until the early 1970s (1951-1970). The analysis of a difference between 1986-2005 and 1951-1970 showed results as follows: i) Through the analysis of vertical wind shear (VWS) and sea surface temperature (SST), less VWS and higher SST in the former (latter) period was located in the Northwest (Southeast) sector. ii) In the analysis of TC passage frequency (TCPF), TCs occurred in the Northwest sector frequently passed from east sea of the Philippines, through East China Sea, to Korea and Japan in the latter period, while TCs in the former period frequently has a lot of influences on South China Sea (SCS). In the case of TCs occurred in the Southeast sector, TCs in the west (east), based on $150^{\circ}E$ had a high passage frequency in the latter (former) period. In particular, TCs during the latter period frequently moved toward from the east sea of the Philippines to SCS and southern China. iii) This difference of TCPF between the two periods was characterized by 500 hPa anomalous pressure pattern. Particularly, anomalous cyclonic circulation strengthened over the East Asian continent caused anomalous southerlies along the East Asian coast line from the east sea of the Philippines to be predominate. These anomalous winds served as steering flows that TC can easily move toward same regions.

Evaluation of Ecological quality and establishment of ecological restoration guideline in landscape level of Mt. Moodeung National Park (무등산국립공원의 생태적 질 평가 및 복원 가이드라인 수립)

  • Lim, Chi Hong;Park, Yong Su;An, Ji Hong;Jung, Song Hie;Nam, Kyeong Bae;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.296-307
    • /
    • 2016
  • Ecological restoration is an eco-technology, which heals the nature damaged by human activity by imitating organization and function of the integrate nature and thereby provide an inhabitable space for diverse organisms. Such an ecological restoration has to be carried out by applying restoration plan prepared based on the results of diagnostic evaluation discussed in the diversified respects. This study aims to prepare an ecological restoration plan of the damaged forest ecosystem in Mt. Moodeung National Park. To arrive at the goal, first of all, we diagnosed quality of forest landscape established in Mt. Moodeung National Park based on natural (topography, climate, and distribution of vegetation) and artificial (land use, linear landscape element) factors. In addition, we evaluated the integrity of each zone divided by linear landscape element quantitatively based on geometric property and land use intensity. As the result of analysis, topography of Mt. Moodeung National Park tended to be depended on weathering property of parent rock and vegetation zones were divided to three vegetation zones. Based on land use pattern, deciduous broad-leaved forest, evergreen needle-leaved forest, and mixed forest occupied about 90% of Mt. Moodeung National Park. Mean score of forest landscape quality was shown in $69.86{\pm}11.41$. As a result, forest landscape elements in Mt. Moodeung National Park were influenced greatly by human activity and the degree was depended on topographic condition. This study suggested the synthetic restoration plan to improve ecological quality of Mt. Moodeung National Park based on the results of diagnostic evaluation.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Spatial Distribution of Benthic Macroinvertebrate Assemblages in Wetlands of Jeju Island, Korea (제주도 일대 습지에 서식하는 저서성 대형무척추동물의 군집 분포 특성)

  • Yung Chul Jun;Seung Phil Cheon;Mi Suk Kang;Jae Heung Park;Chang Su Lee;Soon Jik Kwon
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Most wetlands worldwide have suffered from extensive human exploitation. Unfortunately they have been less explored compared to river and lake ecosystems despite their ecological importance and economic values. This is the same case in Korea. This study was aimed to estimate the assemblage attributes and distribution characteristics of benthic macroinvertebrates for fifty wetlands distributed throughout subtropical Jeju Island in 2021. A total of 133 taxa were identified during survey periods belonging to 53 families, 19 orders, 5 classes and 3 phyla. Taxa richness ranged from 4 to 31 taxa per wetland with an average of 17.5 taxa. Taxa richness and abundance of predatory insect groups such as Odonata, Hemiptera and Coleoptera respectively accounted for 67.7% and 68.2% of the total. Among them Coleoptera were the most diverse and abundant. Taxa richness and abundance did not significantly differ from each wetland type classified in accordance with the National Wetland Classification System. There were three endangered species (Clithon retropictum, Lethocerus deyrolli and Cybister (Cybister) chinensis) and several restrictively distributed species only in Jeju Island. Cluster analysis based on the similarity in the benthic macroinvertebrate composition largely classified 50 wetlands into two major clusters: small wetlands located in lowland areas and medium-sized wetlands in middle mountainous regions. All cluster groups displayed significant differences in wetland area, long axis, percentage of fine particles and macrophyte composition ratio. Indicator Species Analysis selected 19 important indicators with the highest indicator value of Ceriagrion melanurum at 63%, followed by Noterus japonicus (59%) and Polypylis hemisphaerula (58%). Our results are expected to provide fundamental information on the biodiversity and habitat environments for benthic macroinvertebrates in wetland ecosystems, consequently helping to establish conservation and restoration plans for small wetlands relatively vulnerable to human disturbance.