• Title/Summary/Keyword: 기후지형학

Search Result 59, Processing Time 0.02 seconds

The Morpho-Climatic Characteristics of Stratified Slope Deposits in the Southwest Region of Haenam (해남 남서부지역의 Stratified Slope Deposit의 기후지형학적 특성)

  • PARK, Chul-Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.11-24
    • /
    • 2008
  • Stratified slope was formed on the SSE-facing slope in the southwest region of Haenam, South Korea. Field and laboratory investigations into the geomorphology and sedimentology of stratified slope deposit that is inactive. Outcrops of this deposit show an alteration of coarse debris-supported matrix and tiny debris-supported matrix layers. Sedimentological analysis(particle-size analysis) indicates that this deposit is not fluvial process or only gravitation like rock-fall. Many clasts and fine materials on the slope is supposed to be product by congelifraction under Pleistocene periglacial climatic environment. Also The processes responsible for the genesis of this deposit probably are to move downward by gelifluction and to remove fine materials by slope wash in thawing cycle and in situ debris congelifraction on gelifluction slope. Now It is impossible to account for the time range of genesis(diurnal, seasonal). In conclusion, this stratified slope formed in cold and humid periglacial environmental in pleistocene, therefore, this slope is a periglacial relic landform, indicates that in south korea there was a cold and humid paleo-climate such as periglacial environmen.

Estimating on the Erosion and Retreat Rates of Sea-cliff Slope Using the Datum-point in Pado-ri, the Western Coast of Korea (침식기준목을 이용한 파도리 해식애 사면의 침식·후퇴율 산정)

  • JANG, Dong-Ho;PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • This research was carried out to estimate annual erosion and retreat rates by using datum-point and to identify the characteristics and causes of seasonal variations of sea-cliff slope in Pado-ri, Taean-gun. In the result, the erosion and retreat rates of sea-cliff were increased from spring to summer. The rates were increased rapidly between August and October, caused by the effects of extreme weather events such as severe rainstorms and typhoons, etc. Since then, the erosion and retreat rates of sea-cliff were decreased gradually, but the rates were increased again in winter due to the storm surge and mechanical weathering resulting from the repeated freezing and thawing actions of bed rocks. The factors that affect erosion and retreat rates of sea-cliff include the number of days with antecedent participation and daily maximum wave height. In particular, it turned out that the erosion is accelerated by strong wave energy during storm surges and typhoons. The annual erosion and retreat rates of study area for the past two years(from May 2010 to May 2012) were approximately 44~60cm/yr in condition of differences in geomorphological and geological characteristics at each point. These erosion and retreat rates were found to be higher than results of previous researches. This is caused by coastal erosion forces strengthened by extreme weather events. The erosion and retreat process of sea-cliff in the study area is composed by denudation of onshore areas in addition to marine erosion(wave energy).

Mid- to Late Holocene Progradational Pattern of Shinduri Dunefield: Implications for Sea Level and Climatic Changes in the Western Coast of Korea (홀로세 중기 이후 신두리 해안사구의 성장 : 기후변화 및 해수면 변동과의 관련 가능성)

  • HONG, Seongchan;CHOI, Jeong Heon;KIM, Jong Wook
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • There have been growing concerns for the sea level rise due to global warming in recent years. Sea level rise is a serious problem to densely populated coastal areas, because it may affect the coastal landforms to be damaged. Especially coastal sand deposits like coastal dunes are more sensitive than the other coastal landforms. In this paper, Ground Penetrating Radar (GPR) and Optically Stimulated Luminescence (OSL) dating method were used to identify the Holocene geomorphic changes of coastal dune field in Shinduri located at the western coast. The main results in this study that are the dunefield in the study area may have begun to form at around 6.8 ka and it has grown seaward thereafter. Then, dunefield appears to have extensively developed since 3.7 ka. This result, together with previous works on the sea level and climatic changes in the western coast of Korea suggest that the dunefield has been affected by the sea level regression since the Holocene high stand in the Holocene at around 6 ka and climatic change from warm and humid to cold and dry conditions occurred at 4.5 ka.

A Prediction of the Land-cover Change Using Multi-temporal Satellite Imagery and Land Statistical Data: Case Study for Cheonan City and Asan City, Korea (다중시기 위성영상과 토지 통계자료를 이용한 토지피복 변화 예측: 천안시·아산시를 사례로)

  • KIM, Chansoo;PARK, Ji-Hoon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.41-56
    • /
    • 2011
  • This study analyzes the change in land-cover based on satellite imagery to draw up land-cover map in the future, and estimates the change in land category using statistical data of the land category. To estimate land category, this study applied the double exponentially smoothing method. The result of the land cover classification according to year using satellite imagery showed that the type with the largest increase in area of land cover change in the cities of Cheonan and Asan was artificial structure, followed by water, grass field and bare land. However forest, paddy, marsh and dry field were reduced. Further, the result of the time-series analysis of the land category was found to be similar to the result of the land cover classification using satellite imagery. Especially, the result of the estimation of the land category change using the double exponentially smoothing method showed that paddy, dry field, forest and marsh are anticipated to consistently decrease in area from 2010 to 2100, whereas artificial structure, water, bare land and grass field are anticipated to consistently increase. Such results can be utilized as basic data to estimate the change in land cover according to climate change in order to prepare climate change response strategies.

The Palaeoenvironmental Changes and Macromammal Evolution during the Pleistocene in East Asia (동아시아의 제4기 자연환경의 변화와 젖먹이근동물의 제4기적 진화)

  • Sun Joo, Park
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.51-85
    • /
    • 1988
  • The understanding of the faunal sequence and palaeoenvironment of East Asia since the Late Tertiary depends mainly on the knowledge of Chinese fauna and its environmental changes. The recent Chinese researches including geology, geomorphology, climats fluctuation and loess distribution of this area have provided that the rapid uplifting of Himalayas and Qinghai/Xizang Plateau since the Lower Pleistocene was a main selective factor for the process of environmental changes in this vast territory. Although different concepts of the Plio-Pleistocene boundary have been provided, its boundary can not exceed over 2 mya. Instead of the traditional zoogeographical dicthomy in China, faunal compositions of Pleistocene are divided into three faunal zones. The knowledge of macrofaunal evolution in China are useful to understand the palaeoecology of East Asia. Palaeoenvironment of Korea during the Pleistocene Period can be reconstructed by using the analogy of the current Chinese studies.

  • PDF

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

Long-lived cosmogenic nuclide, Beryllium-10 and its applications (장반감기 우주선유발 동위원소, $^{10}Be$과 그 응용)

  • Kim, K.J.;Jull, A.J.T;Woo, H.J.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.30-50
    • /
    • 2006
  • The long-lived radionuclide, $^{10}Be$, is produced by cosmic-ray effects in the atmosphere of the earth as well as its surface and that of other planetary surfaces and atmospheres. Accelerator mass spectrometry (AMS) was developed in late 1970s, which made $^{10}Be$ terrestrial measurements more feasible. Since then, many research applications of $^{10}Be$ for both terrestrial and extraterrestrial applications have been developed, which parallel the wide range of radiocarbon ($^{14}C$) research applications. This paper summarizes production mechanisms of $^{10}Be$ both in the atmosphere and on the surface of terrestrial and extraterrestrial environments and also provides numerous $^{10}Be$ research applications in the fields of geomorphology, oceanography, archaeology, glaciology, cosmochemistry, climatology, and planetary science. We also review some $^{10}Be$ AMS research applications.

  • PDF

Blockfields of Seoraksan National Park: Age and Origin (설악산 국립공원 지역 아고산대의 암괴원의 기원과 연대에 관한 고찰)

  • Kyeong Park
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.6
    • /
    • pp.922-934
    • /
    • 2003
  • On top of several peaks of Seoraksan National Park. many extensive blockfields are found. After initial report was made in year 2000, further field work and analysis of satellite image have been made. Blockfields on top of mountain peaks exhibit evidence of chemical weathering including gnammas and grooves. Also, several lichen colonies larger than 80 cm in diameter have been found on the surface of many blocks. High resolution IKONOS image has been used to delineate the boundary of blockfields which are hard to access during the field trip. Blockfields of Mt. Seoraksan lack fine material necessary for age dating and clay mineral analysis because they experienced long period of wash and erosion during the Holocene. The ages of blockfields seem to be pre-Holocene on the basis of size of lichen colony and weathering pits.

Geomorphic Development of Tucson and Chiricahua in Arizona, U.S.A (미국 아리조나 투산과 치리카와 지역의 지형발달)

  • PARK, Heui Doo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • This studied area is divided into the mountains and the valleys. The former is nearly consisted of the badland, the latter is consisted of alluvial plains in the valley, fluvial terrace at the side of the river, alluvial fans between mountains and river terrace. There are many tors, mushroom rocks, sugarloaves, weathering pits, castle coppies, columnar rocks, pinnacles, balanced rocks carved on tuff by means of erosion in the Chiricahua Nat'l Monument. Willcox Playa is alkalic crust where was lake in pleistocene epoch at the time wetter than present. Alkalic crust was made of Ca, Na, K etc. There are sand dunes around here where was lake side in the past. We found many kinds of fossils at the 2,000ft thick horizons of valley alluvium. Pediment and alluvium bordered at the base of Mt. Dragoon wavily. Exfoliation and spalling and sheeting resulted in boulders around here. Tucson is alluvial plain filled in thick 7,0000ft valley. Volcano, fault, erosion, alluvium were and are processing in this area.

Studies on Debris Flows by Heavy Rainfall in Osaek Area in July 2006 (2006년 7월 집중호우로 인한 오색천 유역의 토석류 발생과 그 특성)

  • YANG, Heakun;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.25-35
    • /
    • 2008
  • Typhoon Ewiniar and Bilis followed by heavy rainfall in July 2006 triggered massive slope failures and debris flows along the Osaek valley within Seoraksan National Park. Since national road 44 is constructed along the fault-line, the susceptibility of hazard in the area is very high. Debris flows in Osaekcheon are mobilized from landslides near the ridgelines and peaks when heavy rainfall elevates pore pressure and adds weight to the hillslopes, causing failure. Stream flows falling onto the existing colluvium or channel-margin deposits also trigger debris flows. Steep slopes constructed along the road and thin regolith in the slope is the main reason for the landslide in the upper stream. In middle reaches of stream, under-fit drainage utilities and narrow bridges cause the overflow, this then triggers debris flow. Overflowing and erosion in the channel margin deposits is main reasons for the debris flow. The intensities and frequencies of heavy rainfall are certain to increase, so early warning and management system for the landslide-related hazard is urgently needed.