• Title/Summary/Keyword: 기후시나리오

Search Result 1,060, Processing Time 0.028 seconds

A Study on Competitiveness and GHG Mitigation Effect of IGCC and Carbon Capture Technology According to Carbon Tax Change (탄소세 변화에 따른 IGCC와 이산화탄소 저감기술 진입경쟁력 및 온실가스 저감효과 분석)

  • Jeon, Young-Shin;Kim, Young-Chang;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.54-66
    • /
    • 2008
  • After the Kyoto Protocol has been ratified in Feb. 16 2005, the developed countries which is involved in Annex-1 have tried to mitigate GHG to the reduction objective. To accomplish this objective, EU developed EU-ETS, CDM project, and so on. Korea has faced pressure to be a member of Annex-1, because Korea and Mexico are only non-Annex-1 countries in the OECD nations. In this study, we simulated power plant expansion plan and calculated $CO_2$ emission with changing Carbon Tax. Especially, we focused on the competitiveness of IGCC and carbon capture technology. In our result, even though carbon tax rise, nuclear power plant does not always increase, it increase up to minimum load. LNG combined cycle power plants substitute the coal fired power plants. If there are many alternatives like IGCC, these substitute a coal fired power plant and we can reduce more $CO_2$ and save mitigation cost.

Trend Analysis of Virtual Water Trade at the Global Level for Overcoming Water Scarcity (국제 물거래에 대비한 가상수 이동 추이 분석)

  • Yoon, Jong-Han;Park, Sung je;Ryu, Si Saeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.133-133
    • /
    • 2016
  • 지구온난화와 그에 따른 기후변화로 수자원부족현상이 전지구적으로 나타남에 따라 세계 각국은 물부족 현상을 극복하기 위해 다양한 대처방안을 찾고 있다. 가상수 이론은 전세계적 차원에서 상품에 내재된 가상수를 통해 물을 공급하고 배분함으로써 물부족을 해결할 수 있다는 주장으로서 물부족현상에 처한 세계 각국의 관심을 끌고 있다. 특히 향후 국제적 수준에서 물거래에 대한 조치가 예상됨에 따라 이에 가상수가 국가간에 얼마나 어떠한 형태로 이동하는지 '가상수 이동'에 대한 정보가 필요하게 되었다. 그럼에도 불구하고 지금까지의 가상수 흐름에 대한 정보는 미국이나 일본 등을 중심으로 한 자료뿐이었다. 한국을 중심으로 한국의 관심사를 반영한 가상수 이동에 대한 연구결과는 충분하지 않았다. 따라서 본 연구에서는 전세계적 수준에서의 가상수 이동추이를 한국을 중심으로 분석하도록 한다. 분석수준은 전세계적 수준과 국가간 수준이며, 분석기간은 1989년부터 2014년까지 총 26년이다. 분석 대상은 가상수 교역이 활발한 주요 16개국의 11개 농축산물이다. 분석을 위한 자료로는 UN과 세계식량기구의 자료를 활용해 데이터셋을 구축했다. 분석결과 전세계적 수준에서는 콩, 옥수수, 밀, 보리가 주요 가상수 수출입 품목으로 밝혀졌다. 시기별로는 1999년 까지는 밀의 교역이 압도적이었으나 1999년 이후 콩 가상수의 교역이 증가하고 있는 것으로 파악되었다. 가상수의 유형과 관련해서는 녹색가상수의 교역이 청색가상수보다 압도적으로 많았으며, 국가간의 가상수 이동량은 지속적으로 증가하고 있는 추세임을 알 수 있었다. 가상수의 주요 수출국은 미국을 비롯해 브라질, 아르헨티나, 호주 등 농업대국이 상위권을 차지했고, 주요 수입국은 중국, 일본, 한국 등 동북아시아 국가들이었다. 가상수 수출은 미국이 분석기간 내내 우위를 차지하나, 2000년대 이후 중국의 부상이 눈에 띄는 변화라고 할 수 있다. 가상수 수입과 관련해서는 2000년대 이후 중국의 가상수 수입 증가 추세가 두드러졌다. 국가간 수준의 분석에서는 한국과 미국, 한국과 중국, 한국과 호주 등 한국의 주요 가상수 교역국가간의 흐름을 분석했다. 국가간 수준의 분석에서 특기할 만한 점은 미국에서 한국으로 이동한 전체 가상수의 81퍼센트를 녹색가상수가 차지하며, 한국에서 중국으로 이동한 가상수의 74퍼센트가 축산물 가상수라는 점이었다. 본 연구의 분석결과를 기반으로 해 향후에는 가상수 이동 데이터베이스를 구축할 것이 요구되며, 가상수 이동추이의 변화가 가져올 시나리오에 대한 연구도 필요하다고 할 수 있다.

  • PDF

Analysis on dam operation effect and development of an function formula and automated model for estimating suitable site (댐의 운영효과 분석과 적지선정 함수식 및 자동화 모형 개발)

  • Choo, Taiho;Kim, Yoonku;Kim, Yeongsik;Yun, Gwanseon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • Intake ratio from river constitutes about 31% (8/26) that beings to "water stress country" as "Medium ~ High" with China, India, Italy, South Africa, etc. Therefore, the present study on a dam that is the most effective and direct for securing water resources has been performed. First of all, climate change scenarios were investigated and analyzed. RCP 4.5 and 8.5 with 12.5 km grid resolution presented in the IPCC (Intergovernmental Panel on Climate Change) 5th Assessment Report (AR5) were applied to study watershed using SWAT (Soil and Water Assessment Tool) and HEC-ResSim models that carried out co-operation. Based on the results of dam simulation, the reduction effects of floods and droughts were quantitatively presented. The procedures of dam projects of the USA, Japan and Korea were investigated. As a result, there are no estimating quantitative criteria, calculating methods or formulas. In the present study, therefore, indexes for selecting suitable dam site through literature investigation and analyzing dam watersheds were determined, Expert questionnaire for various indexes were performed. Based on the above mentioned investigation and expert questionnaire, a methodology assigning weight using AHP method were proposed. The function of suitable dam (FSDS) site was calibrated and verified for four medium-sized watersheds. Finally, automated model for suitable dam site was developed using FSDS and 'Model builder' of GIS tool.

An analysis of storage and runoff reduction characteristics using planter box in architectural LID system (건축형 LID 시스템에서 Planter Box를 활용한 저류 및 유출저감 특성 분석)

  • Kim, Byung Sung;Kim, Jae Moon;Baek, Jong Seok;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.219-226
    • /
    • 2019
  • Recently, research about Low-Impact Development (LID) techniques has been expanded due to problems with the effects of climate change and urbanization that have been increasing. LID technology is used to control flood damage environmentally to reduce runoff and is reduce runoff on city also restore into previous water circulation system from present developed city. However, studies about quantitative data of LID techniques are insufficient. Therefore in this study, the Curve Number (CN) was calculated with the Planter Box, which is storage type LID technology to conduct the water circulation (infiltration, runoff, overflow) analysis. Rainfall intensity scenario (60.4 mm/hr, 83.1 mm/hr, 97.4 mm/hr, 108.2 mm/hr) about water circulation analysis of Planter Box is selected on the basis of probable rainfall intensity table. According to the experimental results, the storage rate of rainwater in Building Planter Box and Street Planter Box was 43.5% to 52.9% and 33.4% to 39%, respectively. In addition, CN value is estimated to 83 at the Planter box and the runoff reduction effect by applying Horton's infiltration capacity curve showed on 51% to 98%.

Human Risk Assessment of Soil Contaminated with Heavy Metal by Waste Reclaimed in Railway Maintenance Site (철도정비부지 내 매립된 폐기물에 의해 중금속으로 오염된 토양의 인체위해성 평가)

  • Braatz, Hatsue Minato;Jung, Minjung;Moon, Seheum;Park, Jinkyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.63-74
    • /
    • 2019
  • This study carried out a human risk assessment of Cu, Pb, Zn and Ni contained in soil contaminated by improperly buried heavy metal wastes in railway sites. The purpose of the human risk assessment is to derive the need for soil remediation and factors that should be considered during soil remediation. Risk assessment was performed in accordance with the Environment Ministry's Risk Assessment Guidelines. The results of the human risk assessment of contaminated heavy metal soil contaminated by improperly buried waste in the railway site were presented after the process of determining exposure concentration, calculating exposure, and determining carcinogenic hazards. The heavy metal content of soil is 621.3 Cu mg/kg, 2,824.5 Pb mg/kg, 1,559.1 Zn mg/kg and 45 Ni mg/kg, which is the exposure concentration of the target contaminant. The results of human exposure according to exposure pathways were high in the order of soil outdoor dust >soil ingestion >soil contact, and Pb >Zn >Cu >Ni were higher in order of contaminant. The carcinogenic and noncarcinogenic risks of soil contaminated with heavy metal waste were higher than the allowable carcinogenic risks (TCR> $10^{-6}$) and the risk index (Hi < 1.0) suggested by USEPA. Therefore, the site needs to be remediated.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Application of Forest Bird Naturalness Index for Evaluating Biodiversity in National Parks in Korea (국립공원 생물다양성 평가를 위한 산림성 조류 자연성 지수 적용)

  • Choi, Sei-Woong;Jang, Jin;Chae, Hee-Young;Park, Jin-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.2
    • /
    • pp.108-119
    • /
    • 2021
  • We aimed to develop a naturalness index for forest-dwelling birds in four national parks in Korea and to simulate the effect of species loss on this naturalness index. Five bird specialists were asked to give 112 bird species a disturbance susceptibility score (DSS), and the naturalness index was calculated based on this. The 112 bird species represented 8 orders (Cuculiformes, Piciformes, Accipitriformes, Falconiformes, Columbiformes, Caprimulgiformes, Strigiformes, and Passeriformes). DSS was the highest for Terpsiphone atrocaudata and Pitta nympha, and lowest for Pica pica, Hypsipetes amaurotis, and Streptopelia orientalis. There was a significant negative relationship between a species' population number and its DSS. Among the four national parks, Mt. Songni had the highest naturalness index, followed by Mt. Wolak, Mt. Juwang, and Mt. Wolchul. We investigated the change in biodiversity indices under four scenarios, which assumed the extinction of species with less than 5 (Scenario 1), 10 (Scenario 2), 50 (Scenario 3), and 100 individuals (Scenario 4). The results showed that although all biodiversity indices decreased as the species loss increased, they all behaved differently. Fisher's alpha diversity decreased as the number of species proportionally decreased. There was almost no change in Shannon-Wiener H' index in Scenarios 1 and 2. The naturalness index showed increased sensitivity in Scenarios 1 and 4. Our future aims are to obtain the DSS for all forest-dwelling bird species, and to adopt the naturalness index to evaluate temporal and spatial changes in biodiversity.

Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin (기후변화 시나리오별 한강유역의 수계별 수온상승 가능성)

  • Kim, Minhee;Lee, Junghee;Sung, Kyounghee;Lim, Cheolsoo;Hwang, Wonjae;Hyun, Seunghun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.

LSTM Prediction of Streamflow during Peak Rainfall of Piney River (LSTM을 이용한 Piney River유역의 최대강우시 유량예측)

  • Kareem, Kola Yusuff;Seong, Yeonjeong;Jung, Younghun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.17-27
    • /
    • 2021
  • Streamflow prediction is a very vital disaster mitigation approach for effective flood management and water resources planning. Lately, torrential rainfall caused by climate change has been reported to have increased globally, thereby causing enormous infrastructural loss, properties and lives. This study evaluates the contribution of rainfall to streamflow prediction in normal and peak rainfall scenarios, typical of the recent flood at Piney Resort in Vernon, Hickman County, Tennessee, United States. Daily streamflow, water level, and rainfall data for 20 years (2000-2019) from two USGS gage stations (03602500 upstream and 03599500 downstream) of the Piney River watershed were obtained, preprocesssed and fitted with Long short term memory (LSTM) model. Tensorflow and Keras machine learning frameworks were used with Python to predict streamflow values with a sequence size of 14 days, to determine whether the model could have predicted the flooding event in August 21, 2021. Model skill analysis showed that LSTM model with full data (water level, streamflow and rainfall) performed better than the Naive Model except some rainfall models, indicating that only rainfall is insufficient for streamflow prediction. The final LSTM model recorded optimal NSE and RMSE values of 0.68 and 13.84 m3/s and predicted peak flow with the lowest prediction error of 11.6%, indicating that the final model could have predicted the flood on August 24, 2021 given a peak rainfall scenario. Adequate knowledge of rainfall patterns will guide hydrologists and disaster prevention managers in designing efficient early warning systems and policies aimed at mitigating flood risks.

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.