• Title/Summary/Keyword: 기후변화 민감도

Search Result 254, Processing Time 0.023 seconds

Development of Snow Depth Frequency Analysis Model Based on A Generalized Mixture Distribution with Threshold (최심신적설량 빈도분석을 위한 임계값을 가지는 일반화된 혼합분포모형 개발)

  • Kim, Ho Jun;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.25-36
    • /
    • 2020
  • An increasing frequency and intensity of natural disasters have been observed due to climate change. To better prepare for these, the MOIS (ministry of the interior and safety) announced a comprehensive plan for minimizing damages associated with natural disasters, including drought and heavy snowfall. The spatial-temporal pattern of snowfall is greatly influenced by temperature and geographical features. Heavy snowfalls are often observed in Gangwon-do, surrounded by mountains, whereas less snowfall is dominant in the southern part of the country due to relatively high temperatures. Thus, snow depth data often contains zeros that can lead to difficulties in the selection of probability distribution and estimation of the parameters. A generalized mixture distribution approach to a maximum snow depth series over the southern part of Korea (i.e., Changwon, Tongyeoung, Jinju weather stations) are located is proposed to better estimate a threshold (𝛿) classifying discrete and continuous distribution parts. The model parameters, including the threshold in the mixture model, are effectively estimated within a Bayesian modeling framework, and the uncertainty associated with the parameters is also provided. Comparing to the Daegwallyeong weather station, It was found that the proposed model is more effective for the regions in which less snow depth is observed.

Comparison of Hsp90 and CYP1A Expression Patterns by Water Temperature Stress in Atlantic Salmon (Salmo salar) (대서양 연어(Salmo salar)의 수온 스트레스에 의한 Hsp90 및 CYP1A 발현 양상 비교)

  • Kang, Han Seung;Song, Jae-Hee;Kang, Hee Woong
    • Journal of Marine Life Science
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Variations in water temperature are known to affect almost every part of fish physiology. The rise in water temperature due to climate change can physically damage fish. This study was conducted to evaluate the health status of the Atlantic salmon (Salmo salar) at high water temperature (20℃) than the optimum water temperature (15℃). Liver tissue exerts important metabolic functions in thermal adaptation. Therefore, liver tissue was used in this study. The evaluation method is to develop the biomarker gene using NGS RNAseq analysis and to examine the expression pattern using RT-qPCR analysis. The NGS RNAseq analysis revealed 1,366 differentially expressed genes, among which 880 genes were increase expressed and 486 genes were decrease expressed. The biomarker genes are such as heat shock protein 90 alpha (Hsp90α), heat shock protein 90 beta (Hsp90β) and cytochrome P450 1A (CYP1A). The selected genes are sensitive to changes in water temperature through NGS RNAseq analysis. Expression patterns of these genes through RT-qPCR were similar to those of NGS RNAseq analysis. The results of this study can be applied to other fish species and it is considered to be useful industrially.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Diffusion equation model for geomorphic dating (지형연대 측정을 위한 디퓨젼 공식 모델)

  • Lee, Min Boo
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.4
    • /
    • pp.285-297
    • /
    • 1993
  • For the application of the diffusion equation, slope height and maximum slope angle are calculated from the plotted slope profile. Using denudation rate as a solution for the diffusion equation, an apparent age index can be calculated, which is the total amount of denudation through total time. Plots of slope angle versus slope height and apparent age index versus slope height are useful for determining relative or absolute ages and denudation rates. Mathematical simulation plots of slope angle versus slope height can generate equal denudation-rate lines for a given age. Mathematical simulations of slope angle versus age for a given slope height, for equal denudation-rate at a particular profile site, and for comparing to other sites having controlled ages.

  • PDF

Analysis of Atmosphere-Ocean Interactions over South China Sea and its Relationship with Northeast Asian Precipitation Variability during Summer (남중국해의 여름철 대기-해양 상호작용과 동아시아 강수량의 상관성 분석)

  • Jang, Hye-Yeong;Yeh, Sang-Wook
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.283-291
    • /
    • 2013
  • This study investigates the changes in the atmosphere-ocean interactions over the South China Sea (SCS) by analyzing their variables in the period of 1979~2011 during the boreal summer (June-July-August). It is found that a simultaneous correlation coefficient between sea surface temperature (SST) and precipitation over SCS during summer is significantly changed before and after the late-1990s. That is, the variation of precipitation over SCS is negatively (positively) correlated with the SST variations before (after) the late-1990s. Our further correlation analysis indicates that the atmospheric forcing of the SST is dominant before the late-1990s accompanying with wind-evaporation feedback and cloud-radiation feedback. After the late-1990s, in contrast, the SST forcing of the atmosphere through the latent heat flux from the ocean to the atmosphere is dominant. It is found that the change in the relationship of atmosphere-ocean interactions over SCS are associated with the changes in the relationship with Northeast Asian summer precipitation. In particular, a simultaneous correlation coefficient between the precipitation over SCS and Northeast Asia becomes stronger during after the late-1990s than before the late-1990s. We argue that the increase of the SST forcing of the atmosphere over SCS may lead a direct relationship of precipitation variations between SCS and Northeast Asia after the late-1990s.

Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim (airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가)

  • Lee, Garim;Lee, Songhee;Kim, Bomi;Woo, Dong Kook;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.761-774
    • /
    • 2022
  • Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

Influence of the Increase of Dissolved $CO_2$ Concentration on the Marine Organisms and Ecosystems (해수중 용존 $CO_2$ 농도 증가가 해양생물 및 해양생태계에 미치는 영향: 국내외 사례 연구)

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Chan-Kook;Park, Gun-Ho;Lee, Jong-Hyeon;Park, Young-Gyu;Gang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.243-252
    • /
    • 2006
  • Influence of the increasing carbon dioxide concentration in seawater on various marine organisms is assessed in this article with regard to the impacts of anthropogenic $CO_2$ introduced into surface or deep oceans. Recent proposals to sequester $CO_2$ in deep oceans arouse the concerns of adverse effects of increased $CO_2$ concentration on deep-sea organisms. Atmospheric introduction of $CO_2$ into the ocean can also acidify the surface water, thereby the population of some sensitive organisms including coral reefs, cocolithophorids and sea urchins will be reduced considerably in near future (e.g. in 2100 unless the increasing trend of $CO_2$ emission is actively regulated). We exposed bioluminescent bacteria and benthic amphipods to varying concentrations of $CO_2$ and also pH for a short period. The ${\sim}l.5$ unit decrease of pH adversely affected test organisms. However, amphipods were not influenced by decreasing pH when HCl was used for the seawater acidification. In this article, we reviewed the biological adverse effects of $CO_2$ on various marine organisms studied so for. Theses results will be useful to predict the potential risks of the increase of $CO_2$ concentrations in seawater due to the increase of atmospheric $CO_2$ emission and/or sequestration of $CO_2$ in deep oceans.

  • PDF

Economic analysis of Frequency Regulation Battery Energy Storage System for Czech combined heat & power plant (체코 열병합발전소 주파수조정용 배터리에너지저장장치 경제성 분석)

  • KIM, YuTack;Cha, DongMin;Jung, SooAn;Son, SangHak
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • According to the new climate change agreement, technology development to reduce greenhouse gases is actively conducted worldwide, and research on energy efficiency improvement in the field of power generation and transmission and distribution is underway [1,2]. Economic analysis of the operation method of storing and supplying surplus electricity using energy storage devices, and using energy storage devices as a frequency adjustment reserve power in regional cogeneration plants has been reported as the most profitable operation method [3-7]. Therefore, this study conducted an economic analysis for the installation of energy storage devices in the combined heat and power plant in the Czech Republic. The most important factor in evaluating the economics of battery energy storage devices is the lifespan, and the warranty life is generally 10 to 15 years, based on charging and discharging once a day. For the simulation, the ratio of battery and PCS was designed as 1: 1 and 1: 2. In general, the primary frequency control is designed as 1: 4, but considering the characteristics of the cogeneration plant, it is set at a ratio of up to 1: 2, and the capacity is simulated at 1MW to 10MW and 2MWh to 20MWh according to each ratio. Therefore, life was evaluated based on the number of cycles per year. In the case of installing a battery energy storage system in a combined heat and power plant in the Czech Republic, the payback period of 3MW / 3MWh is more favorable than 5MW / 5MWh, considering the local infrastructure and power market. It is estimated to be about 3 years or 5 years from the simple payback period considering the estimated purchase price without subsidies. If you lower the purchase price by 50%, the purchase cost is an important part of the cost for the entire lifetime, so the payback period is about half as short. It can be, but it is impossible to secure profitability through the economy at the scale of 3MWh and 5MWh. If the price of the electricity market falls by 50%, the payback period will be three years longer in P1 mode and two years longer in P2 and P3 modes.

Effects of Elevated $CO_2$ Concentration and Temperature on the Response of Seed Germination, Phenology and Leaf Morphology of Phytolacca insularis(Endemic species) and Phytolacca americana(Alien species) ($CO_2$농도와 온도증가에 따른 한국특산식물 섬자리공과 귀화식물 미국자리공의 발아, 식물계절 및 잎의 형태학적 반응연구)

  • Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2010
  • This study was conducted to find out how the germination, phenology and leaf morphology of Phytolacca insularis(endemic species of Korea) and P. americana(alien species) react to the global warming situation. Seed and seedlings of two species were sampled and placed under two separate conditions for the experiment. One of the seed and seedlings was treated in the glass house with control(ambient $CO_2$+ambient temperature, (AC-AT), and the other with control(elevated $CO_2$+ elevated temperature, EC-ET), over the period of one year, 2008-2009. The germination rate of two species was fast, and the time of their germination started early, when they were treated at EC-ET than at AC-AT. Furthermore, the germination rate of Phytolacca insularis(endemic species of Korea) was found to be comparatively lower than that of P. americana(alien species). The former showed only vegetative growth whereas the latter showed both vegetative growth and reproductive growth in one year period. The more $CO_2$ degree and temperature increased, phenological responses of two species, including leaf growth, the formation of flower stems, flowering, and fruit maturing, became much faster, and the time of their leaf-yellowing was delayed. The lamina length of P. insularis was not significantly affected by elevated $CO_2$ and temperature. The lamina length of P. americana, on the other hand, became longer at EC-ET than at AC-AT, but the leaf width of both species increased at EC-ET. As for the number of leaves, both species showed no difference. Finally, the ratio of the leaf area of P. insularis was high at AC-AT, but P. americana was high at EC-ET. These results indicate that P. americana, aliens species, reacts more sensitively to global warming than P. insularis, endemic species, does.

Effect of environmental temperature on respiration rate, rectal temperature and body-surface temperatures in finishing pigs (환경온도가 비육돈의 호흡수, 직장 온도 및 체표면 온도에 미치는 영향)

  • Cheon, Si-Nae;Park, Kyu-Hyun;Choi, Hee-Chul;Kim, Jong-bok;Kwon, Kyeong-Seok;Lee, Jun-Yeob;Woo, Saem-Ee;Yang, Ga-Yeong;Jeon, Jung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.103-110
    • /
    • 2019
  • Recently, Korea has been affected by extreme weather events including extended summers and increased temperatures caused by global warming and climate change. Environmental temperature is especially important to the livestock industry because it is closely related to livestock productivity. This study was conducted to investigate the influence of different environmental temperatures on respiration rate, rectal temperature and body-surface temperature in finishing pigs. Pigs ($98.3{\pm}6.6kg$) were housed in individual cages inside an experimental chamber and exposed continuously to one of five environmental treatments ($22^{\circ}C$, $24^{\circ}C$, $26^{\circ}C$, $28^{\circ}C$, $30^{\circ}C$) for 10 days without providing additional rest time. Feed and water intake, respiration rate, rectal temperature and body-surface (head, ear, neck, back, side) temperature were measured two times daily during the experimental period. A significant increase in respiration rate from $26^{\circ}C$ and in body-surface temperature from $24^{\circ}C$ (p<0.05) was observed. At $30^{\circ}C$, the respiration rate had almost doubled and the body-surface temperature increased by about $5^{\circ}C-7^{\circ}C$. Moreover, ear skin temperature was very sensitive to environmental temperature. However, feed intake, water intake and rectal temperature did not change significantly during the experiment.