• Title/Summary/Keyword: 기화열

Search Result 103, Processing Time 0.026 seconds

Study on the Spraying Characteristics of Fog Nozzles to be used for Greenhouse Cooling (온실냉방용 분사노즐의 분무특성에 대한 고찰)

  • 윤용철;서원명
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.10a
    • /
    • pp.32-35
    • /
    • 1998
  • 최근 온실이 현대화, 대형화, 고정화 및 자동화와 함께 주년생산을 위한 년중 재배체계가 도입되면서, 여름철 작물의 생육환경 조성을 개선하기 위하여 기존의 방법보다 더욱 적극적인 냉방시스템을 활용하게 되었다. 지금까지 알려진 여름철 주간 온실냉방방식에는 여러 가지 있으나, 그 중에서 물의 기화열을 이용한 패드 ㆍ 팬방식, 미스트 ㆍ 팬방식, 포그 ㆍ 팬방식의 증발냉각법이 주를 이루고 있다. (중략)

  • PDF

A Study of Vaporization Characteristics in the Methanol Spark Ignition Engine (메탄올 스파크 점화기관의 기화특성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 1994
  • The oil crises in 1973 and 1978 stimulated the alternative fuel research activities in many countries around the world. Among the alternative fuels, methanol is one of the highest potential fuels for transportation. Methanol has been considered for use as automotive fuel, but it has a defect of the great latent vaporization heat. Therefore, authors have made the fuel vaporizing device in order to eliminate the fuel film flow heating the mixture. This paper presents a study on the characteristics of vaporization, engine performance, and emission which result from using the fuel vaporizing device.

A Study on Cooling and Freezing During Summer Season in Deoksan-ri Eoreumgol (ice valley) Yeongdeok-gun (South Korea) (영덕군 덕산리 얼음골의 냉각 및 하계 결빙현상에 관한 연구)

  • Lee, Jin Kook;Shin, Jae Ryul;Jang, Yun Deuk
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.3
    • /
    • pp.608-617
    • /
    • 2015
  • This paper synthetically analyzes micrometeorological data and geomorphological features of Doeksan-ri Eoreumgol(ice valley) Yeongdeok-gun in order to investigate occurrence characteristics of the ice valley and a mechanism for freezing in summer. This ice valley is located in the distal end of a talus and intensity of cooling and freezing in summer seems to be related to morphology and dimensions of talus. Cooling in the ice valley is generated by cold air flows that move down to the bottom of talus from high mountains through pores and voids, then debris in talus is supercooled by the cold air. For it forms a stable state in and around voids cold air is stagnating in the lower end of talus. This causes freezing in summer at outpour points. Furthermore humidity condition of external air and vaporization heat is a key factor when freezing.

  • PDF

Performance Development of the 400cc EFI Small Engine (400cc급 EFI 소형엔진의 성능개발)

  • Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1547-1551
    • /
    • 2011
  • The EFI small engine has been redesigned and manufactured based on a commercial small engine with a carburettor. Performance development of the EFI small engine has been conducted to optimize the operating conditions. Maximum torque and power were 12.56Ps and 25.4Nm, respectively, that were equivalent with carburettor type engine. Brake specific fuel consumption of the EFI small engine has been improved 17% on average compared with that of base small engine with a carburettor. By conducting KG2-6 mode test,HC+NOx was 7.46g/kWh that satisfied EPA Phase 3 regulation. THC has been reduced 41% on average, but NOx has been increased 3.5 times on average due to the improved thermal efficiency.

Syntheses and Characterizations of Functionalized Graphenes and Reduced Graphene Oxide (관능기화 그래핀 및 환원된 그래핀 옥사이드의 합성과 특성분석)

  • Moon, Hyun-Gon;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.265-271
    • /
    • 2011
  • Graphene oxide (GO) was prepared by the Hummers and Offeman method from graphite. Reduced graphene oxide (EGO) and functionalized graphenes were synthesized from GO by using hydrazine hydrate and amine-functionalized alkyl groups, respectively. The structures of the GO, EGO, and functionalized graphenes were identified by FTIR and $^{13}C$ NMR. In addition, we examined the thermal stability, morphology and dispersibility of the materials in various organic solvents. AFM disclosed that GO and RGO consisted of one- or two-layer graphene regions throughout the film. However, the functionalized graphene films showed average thicknesses of 2.26~3.30 nm, The thermal stability of the functionalized graphenes was poorer than that of the EGO. The functionalized graphenes were well dispersed in toluene or chloroform, as evidenced by the lack of the characteristic graphite reflection in the solutions.

Analysis of 1MW Closed OTEC Cycle Using Thermal Effluent and Waste Heat (발전소 온배수를 이용한 1MW급 폐쇄형 해양온도차발전 성능해석)

  • Kim, Hyeon-Ju;Lee, Ho-Saeng;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.470-476
    • /
    • 2010
  • The thermodynamic performance of closed ocean thermal energy conversion (OTEC) cycle with 1 MW gross power was evaluated to obtain the basic data for the optimal design of OTEC. The basic thermodynamic model for OTEC is Rankine cycle and the thermal effluent from power plant was used for the heat source of evaporator. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the temperature variation of thermal effluent. The saturated pressure of evaporator increased with respect to the increase of thermal effluent temperature, so the cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 1 MW gross power. As the thermal effluent temperature increases about $15^{\circ}C$, the cycle efficiency increased approximately 44%. So, it was revealed that thermal effluent from power plant is important heat source for OTEC plant. Also, if there is an available waste heat, it can be transferred heat to the working fluid form the evaporator through heat exchanger and cycle efficiency will be increased.

A Study on the Energy Performance Evaluation of Building Evaporative Cooling System for Building Construction in Response to Climate Change (기후변화 대응 저에너지 건축물 조성을 위한 건축물 기화냉각시스템 에너지성능평가 연구)

  • Kwon, Ki-Uk
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The recent climate change is exacerbating the external thermal environment and increasing the amount of energy used in building. Energy Plus was used to evaluate low energy technology performance of buildings responding to climate change. The test types of basic building(control) and evaporative mist system + basic building(EMS), and the analysis results of each type are compared. Energy performance evaluation result, Cooling peak load were EMS reduction compared to control is about 9%. Annual cooling load per unit area were EMS reduction compared to control is about 17%. Annual energy use per unit area were EMS reduction compared to control is about 10%. Therefore, the effect of the evaporative cooling system is considered to be good through energy reduction technology of building, according to the amount and distance of the evaporative mist system in the future research on building energy performance evaluation should be carried out.

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio (액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교)

  • Dongkuk Choi;Sooyong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2024
  • Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

Investigation of Icing Phenomenon in Liquid Phase LPG Injection System (액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF