• 제목/요약/키워드: 기하 학습

검색결과 2,941건 처리시간 0.028초

지역 기반 분류기의 앙상블 학습 (Ensemble Learning of Region Based Classifiers)

  • 최성하;이병우;양지훈;김선호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.267-270
    • /
    • 2007
  • 기계학습에서 분류기들의 집합으로 구성된 앙상블 분류기는 단일 분류기에 비해 정확도가 높다는 것이 입증되었다. 본 논문에서는 새로운 앙상블 학습으로서 데이터의 지역 기반 분류기들의 앙상블 학습을 제시하여 기존의 앙상블 학습과의 비교를 통해 성능을 검증하고자 한다. 지역 기반 분류기의 앙상블 학습은 데이터의 분포가 지역에 따라 다르다는 점에 착안하여 학습 데이터를 분할하고 해당하는 지역에 기반을 둔 분류기들을 만들어 나간다. 이렇게 만들어진 분류기들로부터 지역에 따라 가중치를 둔 투표를 하여 앙상블 방법을 이끌어낸다. 본 논문에서 제시한 앙상블 분류기의 성능평가를 위해 UCI Machine Learning Repository에 있는 11개의 데이터 셋을 이용하여 단일 분류기와 기존의 앙상블 분류기인 배깅과 부스팅등의 정확도를 비교하였다. 그 결과 기본 분류기로 나이브 베이즈와 SVM을 사용했을 때 새로운 앙상블 방법이 다른 방법보다 좋은 성능을 보이는 것을 알 수 있었다.

  • PDF

기하 문제 학습을 위한 동적 추론 체계 (A Dynamic Inferential Framework for Learning Geometry Problem Solving)

  • 국형준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권4호
    • /
    • pp.412-421
    • /
    • 2000
  • 수리나 과학 영역의 학습은 원리 이해와 응용을 위주로 함에도 불구하고 기존의 교육용 소프트웨어 제품들은 단순 주입식이나 단답식의 학습을 지원하는 것이 대부분이어서 높은 학습 성과를 기대하기는 어려운 실정이다. 인공 지능 연구에서 지식 표현 체계나 탐색, 추론 기법이 학습기 설계에 도입되어 증명기, 모의 실험기 유형의 학습기 연구에는 상당한 진전을 보아 왔으나 여전히 실용적 수준이라 할 수는 없고 특히 문제 해결을 지원하는 학습기는 설계 모형조차 제시되지 못하고 있다. 본 연구가 설계한 기하 문제 학습기는 학습과 병행하는 동적 추론을 구사한다. 실시간 문제 해결을 지원하기 위한 정보 구성요소로서 명제, 가설 및 연산자에 의해 문제 공간을 정의하고 이들의 생성과 검증을 추론의 주요 대상으로 하는 대화식 문제 학습의 메카니즘을 탐구하였다. 성취한 결과로서 기하 문제 해결에서 필수 불가결한 요소임에도 불구, 기존 시스템이 간과해 왔던 대수 처리를 위한 일련의 추론 전략을 연계적으로 구사함으로서 실용성있는 문제 학습기의 설계 모형을 얻었다. 제안 모형은 물리, 전자 회로 등 타 과학 영역의 문제 학습기 설계에도 적용될 수 있다.

  • PDF

어휘 유사 문장 판별을 위한 BERT모델의 학습자료 구축 (Methodology of Developing Train Set for BERT's Sentence Similarity Classification with Lexical Mismatch)

  • 정재환;김동준;이우철;이연수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.265-271
    • /
    • 2019
  • 본 논문은 어휘가 비슷한 문장들을 효과적으로 분류하는 BERT 기반 유사 문장 분류기의 학습 자료 구성 방법을 제안한다. 기존의 유사 문장 분류기는 문장의 의미와 상관 없이 각 문장에서 출현한 어휘의 유사도를 기준으로 분류하였다. 이는 학습 자료 내의 유사 문장 쌍들이 유사하지 않은 문장 쌍들보다 어휘 유사도가 높기 때문이다. 따라서, 본 논문은 어휘 유사도가 높은 유사 의미 문장 쌍들과 어휘 유사도가 높지 않은 의미 문장 쌍들을 학습 자료에 추가하여 BERT 유사 문장 분류기를 학습하여 전체 분류 성능을 크게 향상시켰다. 이는 문장의 의미를 결정짓는 단어들과 그렇지 않은 단어들을 유사 문장 분류기가 학습하였기 때문이다. 제안하는 학습 데이터 구축 방법을 기반으로 학습된 BERT 유사 문장 분류기들의 학습된 self-attention weight들을 비교 분석하여 BERT 내부에서 어떤 변화가 발생하였는지 확인하였다.

  • PDF

Naive Bayes 문서 분류기를 위한 점진적 학습 모델 연구 (A Study on Incremental Learning Model for Naive Bayes Text Classifier)

  • 김제욱;김한준;이상구
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
    • /
    • pp.331-341
    • /
    • 2001
  • 본 논문에서는 Naive Bayes 문서 분류기를 위한 새로운 학습모델을 제안한다. 이 모델에서는 라벨이 없는 문서들의 집합으로부터 선택한 적은 수의 학습 문서들을 이용하여 문서 분류기를 재학습한다. 본 논문에서는 이러한 학습 방법을 따를 경우 작은 비용으로도 문서 분류기의 정확도가 크게 향상될 수 있다는 사실을 보인다. 이와 같이, 알고리즘을 통해 라벨이 없는 문서들의 집합으로부터 정보량이 큰 문서를 선택한 후, 전문가가 이 문서에 라벨을 부여하는 방식으로 학습문서를 결정하는 것을 selective sampling이라 한다. 본 논문에서는 이러한 selective sampling 문제를 Naive Bayes 문서 분류기에 적용한다. 제안한 학습 방법에서는 라벨이 없는 문서들의 집합으로부터 재학습 문서를 선택하는 기준 측정치로서 평균절대편차(Mean Absolute Deviation), 엔트로피 측정치를 사용한다. 실험을 통해서 제안한 학습 방법이 기존의 방법인 신뢰도(Confidence measure)를 이용한 학습 방법보다 Naive Bayes 문서 분류기의 성능을 더 많이 향상시킨다는 사실을 보인다.

  • PDF

유전 알고리즘 기반 귀납적 학습 환경에서 분류기의 통합 (Integrating Multiple Classifiers in a GA-based Inductive Learning Environment)

  • 김영준
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.614-621
    • /
    • 2006
  • PROSPECTOR에서 사용한 규칙 형태의 분류 규칙을 습득하기 위한 유전 알고리즘 기반 귀납적 학습 환경에서 다중 분류기 학습법을 구현하였다. 다중 분류기 학습법은 주어진 사례 집합에 대해 다수의 분류기를 습득한 후 이를 이용하여 분류 시스템을 구축함으로써 시스템의 성능을 향상시키는 기법이다. 다중 분류기 학습법의 구현을 위해서는 분류기의 분류 결과를 취합하여 최종 결론을 도출해 내기 위한 기법이 필요하다. 본 논문에서는 각각의 클래스에 대해 분류기가 제공하는 사후 가능성을 취합하여 결론을 도출해 내는 기법과 순위에 기반을 둔 보우팅 기법을 소개하고 다중 분류기 학습법이 유전 알고리즘 기반 귀납적 학습 환경에 미치는 영향을 다수의 사례 집합을 이용하여 평가하였다.

초등학교 평면기하학습에서 GSP활용에 대한 연구

  • 강영란;남승인
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제10권
    • /
    • pp.97-106
    • /
    • 2000
  • 학습의 도구로써 컴퓨터의 활용은 학습 내용뿐만 아니라 수학적 지식의 획득 과정에 있어서도 변화를 시도하고 있다. 특히 물리적인 환경에서 시 ${\cdot}$ 공간적인 제약으로 인한 구체적 조작활동을 한계성을 극복하기 위해 개발된 기하학습 소프트웨어인 GSP와 Cabri-Geometry II는 새로운 관점에서의 기하학습을 가능케 한다. 본고에서는 기하학습의 도구로써 컴퓨터의 역할과 GSP의 기능적 특성 및 초등학교 수학교수 ${\cdot}$ 학습과정에서 GSP의 활용할 수 있는 방안에 대해서 살펴본다.

  • PDF

중학교 1학년 직관기하영역에서의 증명요소분석

  • 조완영;정보나
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제15권
    • /
    • pp.141-146
    • /
    • 2003
  • 중학교 기하교육의 목적은 학생들의 수학적인 상황을 보는 기하학적인 직관과 논리적 추론능력의 향상이다. 그러나 이 두 가지 모두 만족스럽지 못한 실정이다. 본 고에서는 중학교 기하교육의 문제를 직관기하와 형식기하의 단절이라는 보고, 직관기하에서 증명의 학습요소를 미리 학습하여 직관기하와 형식기하를 연결하자는 대안을 제시한다. 이를 위해 7-나 교과서의 증명요소를 분석하고자 하였다. 관련문헌을 검토하여 7가지 증명의 학습요소를 선정한 후, 교과서를 분석하였다. 분석 결과, 기호화를 제외한 다른 증명의 학습요소는 매우 빈약한 것으로 나타났다. 직관기하 영역에 대한 교과서 구성이 개선될 필요가 있음을 알 수 있다.

  • PDF

시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선 (Performance Improvement of Controller using Fuzzy Inference Results of System Output)

  • 이우영;최홍문
    • 한국지능시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.77-86
    • /
    • 1995
  • 퍼지 제어기에 신경회로망을 병렬로 연결시키므로 제어성능 향상을 위해 필요했던 소속함수의 미세조정 과정이 학습으로 대신되게 하는 제어기 구조를 제안하였다. 신경회로망의 학습은 오차 역전파 알고리듬에 의해 수행되고 퍼지 제어기의 출력이 학습에 사용되는 오차량으로 사용된다. 따라서 본 제어기는 전문가의 경험과 지식을 제어기 설계에 이용할 수 있고, 별도의 학습과정 없이 제어과정 중에서 신경회로망 제어기가 학습되어 초기의 제어특성이 개선되어지는 특성이 있다. 그리고 본 구성에서 퍼지 제어기는 사용된 규칙에 의해 형성되는 위상평면상의 슬라이딩 면으로 필요한 제어특성과 신경회로망의 학습기준을 제시하는 한편 신경회로망이 학습되기전 제어 시스템의 제어특성이 안정되도록 하며, 신경회로망은 시스템의 상태궤적이 퍼지제어기에 의해 형성된 슬라이딩 면을 가능한한 근사하게 추종하도록 학습되어져 위상평면상 임의의 위치에 있는 시스템의 상태가 슬라이딩 면을 따라 안정점에 도달하도록 하게한다.

  • PDF

유전 알고리즘 기반 귀납적 학습 환경에서 다중 분류기 시스템의 구축을 위한 메타 학습법 (A Meta-learning Approach for Building Multi-classifier Systems in a GA-based Inductive Learning Environment)

  • 김영준;홍철의
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.35-40
    • /
    • 2015
  • 본 논문은 유전 알고리즘 기반 귀납적 학습 환경 하에서 메타 학습법을 이용한 다중 분류기 시스템의 구축에 관한 것이다. 메타 학습법을 이용한 다중 분류기 시스템의 구축에서 분류기는 일반 분류기와 메타 분류기로 구성된다. 메타 분류기는 사례에 대한 일반 분류기의 분류 결과에 학습 알고리즘을 적용하여 얻어진다. 분류시스템의 의사 결정과정에서 메타 분류기의 역할은 일반 분류기의 분류 결과를 평가하여 최종 의사 결정 과정에의 참여 여부를 결정하는 것이다. 분류 시스템은 분류기의 분류 결과가 옳은 것으로 평가된 결과들만 취합하여 이를 바탕으로 최종 분류 결과를 도출해 낸다. 메타 학습법이 다중 분류기 시스템의 성능에 미치는 영향을 다수의 사례 집합을 이용하여 평가하였다.

임베디드 디바이스에 적용 가능한 부분학습 기반의 실시간 손글씨 인식기 (Real-time Handwriting Recognizer based on Partial Learning Applicable to Embedded Devices)

  • 김영주;김태호
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.591-599
    • /
    • 2020
  • 딥러닝 기술은 실세계의 객체를 분류하거나 인식하기 위해서 사용된다. 이를 위해서 준비된 많은 데이터를 고성능 컴퓨터에서 학습한 후에, 그 학습모델을 인식기에 탑재하여 각종 객체들을 인식한다. 이러한 인식기는 다양한 환경에서 사용되면서 인식하지 못하는 객체들이나 인식률이 낮은 객체들이 발생할 수 있다. 이런 문제를 해결하기 위해서 실세계 객체들을 주기적으로 학습하여 인식률을 높인다. 하지만, 즉각적인 인식률 향상이 어려울 뿐만 아니라, 임베디드 디바이스 등에 탑재되어 있는 인식기에서 학습하는 것이 쉽지 않다. 따라서, 본 논문에서는 임베디드 디바이스에 적용 가능한 부분 학습 기반의 실시간 손글씨 인식기를 제안한다. 제안된 인식기는 사용자 요청 시마다 임베디드 디바이스에서 부분 학습을 할 수 있는 환경을 제공하고, 실시간으로 인식기의 학습모델이 갱신된다. 이로 인해서 인식기의 지능이 지속적으로 향상됨으로 최초에 인식하지 못했던 손글씨에 대해 인식이 가능해진다. 이렇게 제안된 인식기는 RK3399 임베디드 디바이스에서 22개의 숫자와 글자에 대해서 학습과 추론이 가능하다는 것을 실험을 통하여 사람 손으로 쓴 은행 계좌명과 계좌번호를 인식할 수 있는 개인화된 지능을 가진 스마트 기기에 활용 가능할 것으로 기대된다.