• Title/Summary/Keyword: 기하학적 가공 오차

Search Result 21, Processing Time 0.024 seconds

광위상 간섭을 이용한 기계 이송축의 운동오차 측정 및 실시간 보상

  • 이형석;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.204-207
    • /
    • 1993
  • 현대는 급속히 발전하는 공업을 바탕으로 생산품의 고기능화, 고정도화, 고속화를 추구하고있다. 그중에서도 고정도화에 대항 요구는 초정밀 가공 분야의 경우 2000년대 초에는 수 nm 수준까지 도달할 것으로 예측된다. 현재 각 선진국에서는, 초정밀도의 형상 정밀도를 요구하는 대형 광학 부품들의 가공에대한 연구가 진행중이며, 이와 같은 연구에서 요구되는 가공 정밀도가 조만간 가공기의 강성한계에 도달할 것이다. 이와함께 초정밀 가공에 있어서, 이송 테이블의 운동오차는 심각한 문제로 대두되고 있으므로, 테이블의 운동오차의측정 및 실시간 보상에 대한 연구의 의미가 있을 것으로 생각된다. 본 연 구는 기계 이송 테이블의 기하학적 운동오차의 실시간보상(real-time correction)에 관한 것이다.

A study on the test workpiece for accuracy analysis of multi-axis turning and milling center (선반 및 밀링 겸용 다축 복합가공기의 정밀도 검증을 위한 표준공작물에 대한 연구)

  • Shin, Jae-Hun;Kim, Hong-Seok;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.277-284
    • /
    • 2018
  • Recently, the demand for precision machining through multi-axis machining has been greatly increased. However, it is difficult to evaluate the geometrical accuracy of the machine tool because of its complicated geometric relationship. In this study, we organized the KS/ISO specifications which are distributed in various regulations, and re-organized the geometrical precision evaluation items of multi-axis machine tools. In addition, a test workpiece was proposed to evaluate and analyze the accuracy of a multi-axis machine tool, and a test workpiece was machined according to predetermined methods and procedures, and then the machined surfaces were measured using CMM. As a result, it was verified that the machining results of the standard workpiece and the precision of the machine tool were very similar qualitatively and quantitatively. From these results, it can be confirmed that the precision analysis of the multi-axis machine tool is possible only by machining the test workpiece.

Measurement Method for Geometric Errors of Ultra-precision Roll Mold Machine Tool: Simulation (초정밀 롤 금형 가공기의 기하학적 오차 측정 방법: 모의실험)

  • Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1087-1093
    • /
    • 2013
  • In this study, a measurement method of double ball-bar is proposed to measure the geometric errors of an ultra-precision roll mold machine tool. A volumetric error model of the machine tool is established to investigate the effects of the geometric errors to a radius error and a cylindricity of the roll mold. A measurement path is suggested for the geometric errors, and a ball-bar equation is derived to represent the relation between the geometric errors and a measured data of the double ball-bar. Set-up errors, which are inevitable at the double ball-bar installation, also are analyzed and are removed mathematically for the measurement accuracy. In addition, standard uncertainty of the measured geometric errors is analyzed to determine the experimental condition. Finally, the proposed method is tested and verified through simulation.

Analysis of the Characteristic Lines on Geometrical Texture by Ball end Milling (볼엔드밀 가공면의 기하학적 특징선 해석)

  • Jung, Tae-Sung;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1148-1153
    • /
    • 2003
  • An adequate method for the prediction of machining errors is essential to improve productivity and product quality. But it is known that there is a remarkable difference between values calculated by conventional roughness model and measured values of actual machined surfaces under high efficient cutting condition. This paper introduces the theoretical analysis of characteristic lines of cut remainder to evaluate a geometrical surface roughness accurately. In this study, analytic equations of the characteristic lines are derived from the surface generation mechanism of ball end milling considering the actual trochoidal trajectories of cutting edges. The predicted results are compared with the results of conventional roughness model.

  • PDF

Identification of guideway errors in the end milling machine using geometric adaptive control algorithm (기하학적 적응제어에 의한 엔드밀링머시인의 안내면 오차 규명)

  • 정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 1988
  • An off-line Geometric Adaptive Control Scheme is applied to the milling machine to identify its guideway errors. In the milling process, the workpiece fixed on the bed travels along the guideway while the tool and spindle system is fixed onto the machine. The scheme is based on the exponential smoothing of post-process measurements of relative machining errors due to the tool, workpiece and bed deflections. The guideway error identification system consists of a gap sensor, a, not necessarily accurate, straightedge, and the numerical control unit. Without a priori knowledge of the variations of the cutting parameters, the time-varying parameters are also estimated by an exponentially weighted recursive least squares method. Experimental results show that the guideway error is well identified within the range of RMS values of geometric error changes between machining passes disregarding the machining conditions.

Development of a Machining Error Estimation System for Vertical Lathes with Structural Deformation and Geometric Errors (구조변형과 기하학적 오차를 고려한 수직형 선반의 가공오차 해석시스템 개발)

  • 이원재;윤태선;김석일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.15-22
    • /
    • 1999
  • In this study, a machining error estimation system far vertical lathes with structural deformation and geometric errors, is realized based on the virtual manufacturing technologies. The positional and directional errors of cutting tool are determined by considering the geometric errors and dimensions of machine components and by introducing the equilibrium condition between the cutting force and structural deformation. Especially, the machining errors of vertical lathes are estimated by using the prescribed cutting test(JIS B 6331). The system can be implemented to evaluate the machining accuracies of vertical lathes at the design process and to design the high precision vertical lathes.

  • PDF

Development of a Machining Error Estimation System for Vertical Lathes with structural Deformation and Geometric Errors (구조변형과 기하학적 오차를 고려한 수직형 선반의 가공오차 해석시스템 개발)

  • 이원재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.146-151
    • /
    • 1998
  • In this study, a machining error estimation system for vertical lathes with structural deformation and geometric errors, is realized based on the virtual manufacturing technologies. The positional and directional errors of cutting tool are determined by considering the geometric errors and dimensions of machine components and by introducing the equilibrium condition between the cutting force and structural deformation. specially, the machining errors of vertical lathes are estimated by using the prescribed cutting test(JIS B 6331). The system can be implemented to evaluate the machining accuracies of vertical lathes at the design process and to design the high precision vertical lathes.

  • PDF

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.

Robust Computation of Polyhedral Minkowski Sum Boundary (다면체간의 강건한 민코스키합 경계면 계산)

  • Kyung, Min-Ho;Sacks, Elisha
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2010
  • Minkowski sum of two polyedra is an operation to compute the sum of all pairs of points contained in the polyhedra. It has been a very useful tool to solve many geometric problems arising in the areas of robotics, NC machining, solid modeling, and so on. However, very few algorithms have been proposed to compute Minkowski sum of polyhedra, because computing Minkowski sum boundaries is susceptible to roundoff errors. We propose an algorithm to robustly compute the Minkowski sum boundaries by employing the controlled linear perturbation scheme to prevent numerically ambiguous and degenerate cases from occurring. According to our experiments, our algorithm computes the Minkowski sum boundaries with the precision of $10^{-14}$ by perturbing the vertices of the input polyhedra up to $10^{-10}$.