• 제목/요약/키워드: 기하광학

검색결과 198건 처리시간 0.019초

Analysis of Electromagnetic Scattering by a Perfectly Conducting Strip Grating on Dielectric Multilayers (다층 유전체 위의 조기적인 도체 스트립 구조에 의한 전자파산란 해석)

  • 윤의중;양승인
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제8권2호
    • /
    • pp.161-172
    • /
    • 1997
  • In this paper, electromagnetic scattering by a perfectly conducting strip grating on dielectric multilayers is analyzed for the normalized reflected and transmitted power by applying the Fourier-Galeakin moment method. The induced current density is expanded in a series of multiplication of chebyshev polynomials of the first kind and functions with appropriate edge boundary condition, the continuous condition of electromagnetic field is applied in the boundary planes. The confirm the validity of the proposed method, the nor- malized reflected and transmitted power obtained by varying the relative permittivity and thickness of each dielectric layers are evaluated and compared with those of the existing numerical method and a paper, and then the numerical results in this paper are in good agreement with those of the existing numerical method and the paper. The sharp variation position in the geometrically normalized reflected and transmitted power can be moved by the incident angle, grating period, and the relative permittivity and thickness of the dielectric multilayers, these sharp variation points which are called the Wood's anomaly of the Geome- trically normalized reflected power are observed as a main factor when the reflected powers of the higher order mode are transitted between propagating and evanescent modes, and the local minimum positions are slightly moved to the left hand direction in which grating period is getting small according to the increase of the relative permittivity of dielectric layers.

  • PDF

Practical Reading of Gilles Deleuze on Frame from Filmmaking Perspective (들뢰즈의 프레임: 영화제작 관점에서 읽기)

  • Kim, Jung-Ho;Kim, Jae Sung
    • The Journal of the Korea Contents Association
    • /
    • 제19권11호
    • /
    • pp.527-548
    • /
    • 2019
  • For Deleuze, the frame is a closed system with numerous subsets of information. the frame can be defined by mathematics and physics. it is a geometric system of equilibrium and harmony with variables or coordinates. like paintings, Linear perspective represents a three-dimensional depth in a two-dimensional plane through vanishing points, horizontal lines in the frame. Linear perspective makes it possible to assume the infinity towards the vanishing point and the infinity towards the outside of the frame, the opposite of the vanishing point. Not only figures and lines in the drawing paper, but also the space between the figures and lines in the drawing paper was recognized. that is space, the 3rd dimension. with the centripetal force and centrifugal force of the frame, frame follow the physical rules of power and movement. de framing is against the dominant linear perspective and central tendency of the frame. The film contains four-dimensional time while reproducing three-dimensional space in two dimensions. It may be that the outside of the frame, or outside the field of view, contains thought, the fifth dimension.

Pre-Service Teachers' Understandings on Earth Science Concept needed for an Integrated Approach: Exploring Mental Models about Eclipse Phenomena by Analyzing Phenomenological Primitives and Facets (통합적 접근이 필요한 지구과학 개념에 대한 예비 교사의 이해: 현상론적 초안과 국면 분석을 통한 식 현상에 대한 정신모형 탐색)

  • Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • 제29권4호
    • /
    • pp.352-362
    • /
    • 2008
  • This study explored pre-service teachers' mental models about eclipse phenomena to investigate their understandings on the earth science concept needed f3r an integrated approach. We conducted in-depth interviews with two different contexts on 30 secondary and 36 primary pre-service teachers participants, and analyzed phenomenological primitives (p-prims) and facets of causal explanations about eclipses. Based on this study, we identified four different levels of mental models about eclipses. Four mental models were categorized as (1) Screening model, (2) Orbital plane model, (3) Hybrid model, and (4) Shadow cast model. Screening model is a flawed mental model, orbital plane model is an incomplete correct mental model, and shadow cast model is a scientifically correct mental model. Hybrid model, composite of two or more mental models, use multiple mental models simultaneously. Orbital plane model was the most widespread mental model in secondary pre-service teachers group, whereas screening model was used frequently in primary group. It was found that the level of mental model could be determined by the level of facet and p-prims. We confirmed context sensitivity of the mental models and perceived the necessity of integrated approaches to promote progression of mental models. Implications of our findings for enhancing pre-service science teachers' topic-specific pedagogical content knowledge (PCK) associated with eclipse phenomena are also discussed here.

Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters (연안해역 모니터링을 위한 초분광영상 처리기법 현황)

  • Kim, Sun-Hwa;Yang, Chan-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제18권1호
    • /
    • pp.48-63
    • /
    • 2015
  • In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.

Anatomical Achievement and Thought of Leonardo da Vinci (레오나르도 다빈치의 해부학 업적과 사고)

  • Chai, Ok Hee;Song, Chang Ho
    • Anatomy & Biological Anthropology
    • /
    • 제29권2호
    • /
    • pp.35-46
    • /
    • 2016
  • Leonardo da Vinci is remembered as the greatest genius of the Renaissance. He left outstanding achievements as an artist, scientist and inventor, and contributes up to today's science. He ranks the best in a variety of fields, such as botany, mathematics, geology, astronomy, geometry and optics. It has well known that Leonardo is an artist, scientist, inventor and philosopher. And he was a great anatomist that dissected dead bodies and animals directly and left many anatomical drawings. He took an interest in anatomy from the point of view of the artist, which is why the human body structure and function to know the sakes were "ignorant of the anatomy should not be upset." Over time, he became interested in the structure and function of the body, even get the human body in a difficult environment; he dissected many the human bodies directly. His scientific inquiry and infatuation made him as an advanced pioneer for more than 100 years, and got enough level to surpass the artistry. Leonardo left about 1,800 anatomical figures of the muscular, skeletal, vascular, nervous and urogenital system, and they are also very scientific and high artistic achievements. The aim of this article is to take a look at Leonardo da Vinci's anatomical achievements and thoughts. In addition, the goal is to knowledge today's anatomists about Leonardo da Vinci's astonishing achievements as a great pioneer in anatomy.

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration (해양 표적을 이용한 대기 상단 가시영역에서의 복사휘도 모의와 위성 센서 검보정에의 활용 가능성 연구)

  • Kim, Jung-Gun;Sohn, Byung-Ju;Chung, Eui-Seok;Chun, Hyoung-Wook;Suh, Ae-Sook;Kim, Kum-Lan;Oh, Mi-Lim
    • Korean Journal of Remote Sensing
    • /
    • 제24권6호
    • /
    • pp.535-549
    • /
    • 2008
  • Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • 제26권5호
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • 제39권6_1호
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.