• Title/Summary/Keyword: 기포 이미지

Search Result 16, Processing Time 0.019 seconds

Study on the Relationships between Single Bubble Growth Behavior and Bubble Shape Assumption in Pool and low-He Flow Boiling (풀비등과 저Re수 흐름비등에서의 기포의 형상과 성장에 대한 연구)

  • Kim, Jeong-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.73-82
    • /
    • 2009
  • 포화상태 핵비등과 저 Re수의 흐름비등에서 얻어진 실험결과를 바탕으로 하여, 기포가 성장하는 동안의 등가 기포 직경과 열전단율의 거동에 대한 기포 형상 가정의 효과를 제시하기 위한 해석적인 연구를 수행하였다. 이러한 목적을 달성하기 위하여, 등가 기포 반경이 기포가 성장하는 동안 촬영된 기포의 이미지로부터 얻어질 수 있는 형상 가정을 이용하여 계산되었다. 그리고 열전달율을 포화상태 핵비등 동안 미세크기의 히터와 휘스톤브리지 회로를 이용하여 측정하였다. 그리고, 기포 형상 가정의 효과를 실험결과와 비교하였고, 이를 통해 단일 기포의 성장 거동을 분석하기 위한 기포 형상 가정이 매우 중요함을 보였다.

Utilization of Image Analysis Technique for Characterization of Micro-Bubbles Generated by Polymeric Membrane Module (고분자 중공사막 모듈을 이용한 미세기포 발생과 이미지 분석기법을 이용한 기포 특성 파악)

  • Kim, Jun-Young;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.447-452
    • /
    • 2011
  • In this study, the polymeric membrane module is used as a diffuser and an image analysis technique based on visual information is applied to get bubble characteristics. The bubble size generated passed through polymeric membrane module was smaller from 30 to 64% than that of air stone, and bubble volume over 70% was ranged from 0.2 to 0.82 mm. But over 80% the bubbles from air stone diffuser ranged from 0.77 to 1.08 mm. The air stone and polymeric membrane module used as diffuser for a flotation system. The floc size inside the flotation reactor using air stone diffuser was bigger than that of the polymeric membrane module, which means that the micro-bubbles generated from polymeric membrane module could provide better opportunities for collisions between colloidal particles than those from air stone diffuser. Therefore, there is a possibility to apply the polymeric membrane module as a diffuser to increase the removal efficiency in the flotation process. Also, the image analysis technique used in this study could be applied as a useful analytical tool for acquisition of an information about the bubble characteristic.

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Measurement of Bubble Size in Flotation Column using Image Analysis System (이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정)

  • An, Ki-Seon;Jeon, Ho-Seok;Park, Chul-Hyun
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.104-113
    • /
    • 2020
  • Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

A study on the estimation of bubble size distribution using an acoustic inversion method (음향 역산법을 이용한 기포의 크기 분포 추정 연구)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.151-162
    • /
    • 2020
  • This paper presents an acoustic inversion method for estimating the bubble size distribution. The estimation error of the attenuation coefficient represented by a Fredholm integral equation of the first kind is defined as an objective function, and an optimal solution is found by applying the Levenberg-Marquardt (LM) method. In order to validate the effectiveness of the inversion method, numerical simulations using two types of bubble distribution are performed. In addition, a series of experiments are carried out in a water tank (1.0 m × 0.54 m × 0.6 m), using bubbles generated by three different generators. Images of the distributed bubbles are obtained by a high-speed camera, and the insertion losses of the bubble layer are measured using a source and a hydrophone. The image is post-processed to glance a distribution characteristics of each bubble generator. Finally, the size distribution of bubbles is estimated by applying the inversion method to the measured insertion loss. From the inversion results, it was observed that the number of bubbles increases exponentially as the bubble size decreases, and then increases again after the local peak at 70 ㎛ - 120 ㎛.

Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel (사각 마이크로 채널 내 Taylor 유동 특성 예측에 대한 연구)

  • Lee, Jun Kyoung;Lee, Kwan Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.557-566
    • /
    • 2015
  • The characteristics of a gas-liquid Taylor (slug) flow in a square micro-channel with dimensions of $600{\mu}m{\times}600{\mu}m$ are experimentally investigated in this paper. The test fluids were nitrogen and water. The superficial velocities of the liquid and gas were in the ranges of 0.01 - 3 m/s and 0.1 - 3 m/s, respectively. The bubble and liquid slug lengths, bubble velocities, and bubble frequencies for various inlet conditions were measured by analyzing optical images obtained with a high-speed camera. It was found that the measured values (bubble and liquid slug lengths, bubble velocities) were not in good agreement with the values obtained using empirical models presented in the existing literature. Modified models for the bubble and liquid slug lengths and bubble velocity are suggested and shown to be in good agreement (${\pm}20$) with the measured values. Moreover, the bubble frequency could be predicted well by the relationship between the unit cell length and its velocity.

Estimation of bubble size distribution using deep ensemble physics-informed neural network (딥앙상블 물리 정보 신경망을 이용한 기포 크기 분포 추정)

  • Sunyoung Ko;Geunhwan Kim;Jaehyuk Lee;Hongju Gu;Kwangho Moon;Youngmin Choo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Physics-Informed Neural Network (PINN) is used to invert bubble size distributions from attenuation losses. By considering a linear system for the bubble population inversion, Adaptive Learned Iterative Shrinkage Thresholding Algorithm (Ada-LISTA), which has been solved linear systems in image processing, is used as a neural network architecture in PINN. Furthermore, a regularization based on the linear system is added to a loss function of PINN and it makes a PINN have better generalization by a solution satisfying the bubble physics. To evaluate an uncertainty of bubble estimation, deep ensemble is adopted. 20 Ada-LISTAs with different initial values are trained using the same training dataset. During test with attenuation losses different from those in the training dataset, the bubble size distribution and corresponding uncertainty are indicated by average and variance of 20 estimations, respectively. Deep ensemble Ada-LISTA demonstrate superior performance in inverting bubble size distributions than the conventional convex optimization solver of CVX.

Effect of Gas- and Liquid-injection Methods on Formation of Bubble and Liquid Slug at Merging Micro T-junction (마이크로 T자형 합류지점에서 기체 및 액체의 주입 방법이 기포 및 액체 슬러그 생성에 미치는 영향)

  • Lee, Jun Kyoung;Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.227-236
    • /
    • 2016
  • In the present experimental study, the effect of gas- and liquid-injected methods on the formation of bubble and liquid slug at the merging micro T-junction of a square microchannel with dimensions $600{\mu}m{\times}600{\mu}m$ was investigated. Nitrogen and water were used as test fluids. The superficial velocities of the liquid and gas were in the range of 0.05 - 1 m/s, and 0.1 - 1 m/s, respectively, where the Taylor flow was observed. The bubble length, liquid slug length, bubble velocity, and bubble generation frequency were measured by analyzing the images captured using a high-speed camera. Under similar inlet superficial velocity conditions, in the case of gas injection to the main channel at the merging T-junction (T_gas-liquid), the lengths of the bubble and liquid slug were longer, and the bubble generation frequency was lower than in the case of liquid injection to the main channel at the merging T-junction (T_liquid-gas). On the other hand, in both cases, the bubble velocity was almost the same. The previous correlation proposed using experimental data for T_liquid-gas had predicted the present experimental data of bubble length, bubble velocity, liquid slug length, and bubble generation frequency for T_gas-liquid to be ~24%, ~9%, ~39%, ~55%, respectively.

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.

A Study on Enhanced Algorithms for Detecting Defects of Glasses (유리 결함 검사를 위한 개선된 알고리즘 연구)

  • Han Chang-Ho;Park Seong-Soo;Oh Choon-Suk;Ryu Young-Kee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.190-192
    • /
    • 2006
  • 본 논문은 유리의 결함 검사를 위한 알고리즘을 제안한다. 기포 측정에 대한 정의와 기포의 형상을 측정하는 알고리즘을 제시하고, 비젼 시스템을 이용한 검사자동화 시스템에 적용하여 테스트를 하였다. 기포 형상에는 두가지 타입으로 원형 타입과 긴형상 타입으로 구분되며, 이 두가지 타입에 따라 측정 결과 표시 방법이 다르다. 이미지 획득 및 전저리에서는 ccd 카메라를 사용하여 획득한 영상과 결함을 찾기 위해 영상을 이진화를 했으며, 얻어진 이진영상은 chain code 알고리즘을 통해 결함의 면적, 둘레 길이 및 위치등의 정보를 추출한다. 실제 물리적 크기를 정확히 얻기 위해 카메라의 보정을 했다. 광학계의 심도에 비하여 패널의 두께가 두껍기 때문에 하나의 영상으로는 기포의 양질의 영상획득이 불가능하다. 이러한 문제를 해결하기 위하여 높이를 변화시켜가며 획득한 영상으로 불량형상을 찾아내고, 측정하기 적합한 영상을 획득하는 화상처리 알고리즘도 제안한다. 조명은 기존에 사용한 백라이트 명시야 조명을 사용하였다. 시스템의 결함 검출율은 거의 90%이상의 성능을 나타내고 있다.

  • PDF