• Title/Summary/Keyword: 기포 유동층 연소로

Search Result 28, Processing Time 0.02 seconds

Combustion Properties of Anthracite Coal in Tonghae CFB combustor (동해화력 순환유동층 연소로에서의 무연탄 연소 특성)

  • 이시훈;박성희;김상돈;최정후;이종민;김재성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.81-84
    • /
    • 1999
  • 순환유동층 (Circulating Fluidized Bed : CFB) 은 기존의 기포유동층에 비하여 높은 유속에서 조업되는 반응기로, 고속의 기체와 크기가 작은 고체 입자간의 긴밀한 접촉을 통하여 비교적 대규모의 여러 가지 화학적, 물리적 작업을 수행하는 유동층기술의 한 분야이다. 순환유동층은 1940년부터 공업적으로 이용되기 시작하였으며 현재에는 가솔린의 제조, 석탄의 연소, 가스화 등에 널리 사용되고 있다.(중략)

  • PDF

A Study on Combustion Characteristics of Refuse Derived Fuel(RDF) in Various Incinerators (연소방식별 폐기물 고형연료(RDF)의 연소특성 연구)

  • Kim Woo-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.46-57
    • /
    • 2006
  • For the development of combustion technology of RDF(refuse derived fuel), combustion characteristics are examined in bubbling fluidized bed, circulating fluidized bed, continuos combustor and batch type combustor. The characteristics of combustion and exhaust gas has been compared and analyzed in many type of combustion facilities, which has been utilized as basic data for the advanced research of specified RDF combustion facility. Stable combustion has been observed in bubbling and circulating fluidized bed from controled operating condition like the proper feeding rate and superficial gas velocity. In circulating fluidized bed, concentration of NOx has been increased with the operating condition by the fuel-NO and oxygen reaction and $SO_2$ can be considered not to be produced in RDF fluidized bed from very low concentration in flue gas. HCl concentration is 36.4 ppm as average value and lower than standard emission value, but the counter plan is needed. Shaped RDF and fluff RDF have been compared in continuos combustor and batch type combustor and shaped RDF shows benefit for the stable heat recovery and gas emission shows similar value and characteristics.

Characteristics of heat transfer and bubble around horizontal tube in a fluidized bed heat exchanger (유동층 열교환기의 수평관에서 열전달 및 기포특성)

  • 김성원;안정렬;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.97-100
    • /
    • 2000
  • 유동층 열교환기 (Fluidized Bed Heat Exchanger; FBHE) 는 온도 균일성이라는 유동층의 특징을 이용하여 적당한 전열면적을 갖는 열교환관을 층 내 설치하여 일정한 양의 열을 전열시키는 것으로, 최근 순환유동층 연소로의 scale-up 을 통한 열용량 증대와 함께 고온의 재순환물질로부터 열을 회수, 연소로의 온도제어 및 열회수율의 극대화를 얻고자 재순환부에 연결하여 사용하고 있다. 또한, 가압순환유동층의 개발과 더불어 유효열전달 면적의 증대를 통한 상대적인 연소로 소형화를 위해 채택되고 있다. 특히, 유동층 열교환기는 전체 공정에서 20-60% 의 열을 회수할 수 있어, 열전달에 있어 매우 중요한 역할을 차지한다.(중략)

  • PDF

Study of Circulating Fluidized Bed Coal Combustion (순환유동층 석탄 연소특성 연구)

  • 선도원;배달희;한근희;손재익;위영호;이정수;김종영
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.19-22
    • /
    • 1995
  • 순환유동층 연소기술은 다양한 성상의 연료를 저공해 고효율로 연소할 수 있는 우수한 연소방식으로 재래의 기포유동층 연소방식에서 부터 고효율, 대용량으로 확장되어 발전 및 열병합, 소각, 또는 복합발전에 적용되는 차세대 연소기술이다 [1,2]. 국내에는 1980년 중반이후 현재까지 약 10여기의 보일러가 도입되었으며, 경제성 및 관리체계의 우수성을 인정받아 확대 보급될 전망이다.

  • PDF

About Fluidized Bed Incinerators (유동층 소각로에 대하여)

  • 박승호
    • Journal of the KSME
    • /
    • v.35 no.7
    • /
    • pp.620-637
    • /
    • 1995
  • 이 글에서는 유동층소각로와 관련된 기술적 사항을 정리하고자 한다. 일부 교과서적인 내용이 서술되어 있으나, 자세한 이론적 고찰보다는 현상적인 이해에 중점을 두고, 실제 유동층 소각로와 관련된 분야에서 연구를 수행하는 연구자들과의 토론 및 설계시 고려하여야 할 사항들을 간략히 포함한다. 일반적으로 유동층은 효울적인 화학반응로로서 주로 이용되고 있으나, 이 글에서는 환경 및 에너지분야와 일정한 관계가 있는 폐기물 소각로 및 석탄연소로로서의 유동층의 응용에 초점을 맞추고 있다. 우선 환경 및 에너지산업의 현황을 이해함으로써 유동층의 핵심적 역할 담당 가능성을 밝힌다. 그리고 소각로의 종류 및 유동층의 역사와 응용에 대하여 각략히 설명 한다. 여타의 소각로와는 다른 특성인 기포유동특성 및 유동화에 대하여 논함으로써 유동층에 대한 기본현상을 파악한다. 유동층 소각로의 중요한 기능인 공해물질의 노내처리에 대하여 논 의하고, 기포유동층보다 효율적인 순환유동층 및 가압유동층의 특성과 역할을 소개한다. 그리고 유동층 소각로의 예로 일본의 폐기물소각로 및 하수슬러지 소각로개발 현황을 소개한다. 최종 적으로는 유동장 소각로의 실제 설계과장에 대하여 간략히 해설한다.

  • PDF

Characteristics of Solid Regenerable $CO_2$ sorbents for Pre-combustion $CO_2$ Capture (연소전 $CO_2$ 포집용 분무건조 고체 흡수제의 물성 및 $CO_2$ 흡수 특성)

  • Baek, Jeom-In;Ryu, Jungho;Lee, Joong Beom;Eom, Tae-Hyoung;Kim, Ji-Woong;Jeon, Eon-Sik;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.110.2-110.2
    • /
    • 2010
  • 현재 상용가능한 연소전 $CO_2$ 포집 기술은 습식 스크러빙 방식으로 고온의 합성가스를 상온 수준으로 온도를 낮춘 후 $CO_2$를 포집해야 하고 포집된 $CO_2$의 압력이 낮아 재압축하여 저장소로 보내야 함에 따라 큰 폭의 열효율 손실이 불가피하다. 고온 고압에서 이산화탄소를 포집할수 있는 고체 흡수제를 이용할 경우 이산화탄소 포집 치 저장 추가에 따른 시스템 효율 저하를 최소화할 수 있다. 고체 $CO_2$ 흡수제는 서로 연결된 두 개의 유동층 반응기를 순환하면서 흡수탑에서는 합성가스 중의 $CO_2$를 흡수하고 재생탑에서는 고온의 수증기와 접촉하여 흡수된 $CO_2$를 다시 배출함으로써 재생된다. 따라서 건식 재생 $CO_2$ 흡수제는 유동층 공정에 응용가능한 물성과 함께 높은 $CO_2$ 흡수능과 빠른 반응성이 요구된다. 본 연구에서는 유동층 공정에 적합한 물성을 가진 연소전 $CO_2$ 포집용 고체 흡수제를 분무건조법으로 제조하였으며, 모사 합성가스를 이용하여 열중량분석기와 기포유동층반응기를 이용하여 $200^{\circ}C$ 흡수, $400^{\circ}C$ 재생, 압력 20 bar 조건으로 반응성을 측정하였다. 개발된 고체 $CO_2$ 흡수제는 열중량분석기에서는 반응 후 10-13 wt%의 무게증가를 나타내었고 기포유동층반응기에서는 8-10 wt%의 $CO_2$ 흡수능을 보여주었다. 특히 수증기의 함량이 10% 이상에서 높은 흡수능을 나타내어 수증기가 반응에 크게 작용하고 있음을 알 수 있었다.

  • PDF

A Study on the Flow Characteristics of Bubbles in a Fluidized Bed (유동층에서 기포의 유동특성에 관한 연구)

  • 김용섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1996
  • A fluidized bed combustion chamber is widely used to incinerate waste material. The most important factor designing the incinerator is the flow characteristics in a fluidized bed, because combustion efficiency is influenced by the flow characteristics. This paper has invesitigated the flow characteristics of bubbles in fluidized bed by means of meassuring a pressure fluctuation in the fluidized bed. A pressure probe system has used to measure the pressure. The data concerned with bubble rising velocity, bubble size, distribution of bubbles and frequency of bubble generation or decay are obtained to find the flow characteristics of bubbles in the fluidized bed. The result obtained from this experimental study can be used to design the fuel feeding system of fluidized bed combustion type incinerator. And it is possible to predict the mixing of waste material and fluidizing material.

  • PDF

Investigation on Combustion Characteristics of Sewage Sludge using Pilot-scale Bubbling Fluidized Bed Reactor (파일럿 규모 기포 유동층 반응기를 이용한 하수 슬러지 연소 특성 분석)

  • Kim, Donghee;Huh, Kang Y.;Ahn, Hyungjun;Lee, Youngjae
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.331-342
    • /
    • 2017
  • To estimate the combustion characteristics of sewage sludge and wood pellet, thermogravimetric analysis (TGA) was conducted. As TGA results, combustion characteristics of sewage sludge was worse than wood pellet. In ash fusion temperature (AFT) analysis, slagging tendency of sewage sludge is very high compared to wood pellet. And also, the bubbling fluidized bed reactor with a inner diameter 400 mm and a height of 4300 mm was used for experimental study of combustion characteristics fueled by sewage sludge and wood pellet. The facility consists of a fluidized bed reactor, preheater, screw feeder, cyclone, ash capture equipment and gas analyzer. The thermal input of sewage sludge cases were $54.5{\sim}96.5kW_{th}$, in case of wood pellet experiment, it was $96.1kW_{th}$. As experiment results, the $NO_x$ emission of sewage sludge was averagely about 10 times the $NO_x$ emission of wood pellet. And also CO emission of sewage sludge is about 3.5 times of wood pellet. Lastly as a result of analysis of captured ash in cyclone, the combustion efficiency of all cases were over 99%, but the potential for slagging/fouling was high at all cases by component analysis of ash.

Experimental Study of Co-firing and Emission Characteristics Fueled by Sewage Sludge and Wood Pellet in Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수슬러지 및 우드펠렛 혼소에 관한 연소 특성 분석 및 비교)

  • Lee, Youngjae;Kim, Jongmin;Kim, Donghee;Lee, Yongwoon
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • The bubbling fluidized bed (BFB) reactor with a diameter of 0.1 m and a height of 1.2 m was used for experimental study of co-firing and emission characteristics fueled by sewage sludge (SS) and wood pellet (WP). The facility consists of a fluidized bed reactor, feeding system, cyclone, condenser and gas analyzer, The mean particle diameter and minimum fluidization velocity are $460{\mu}m$ and $0.21ms^{-1}$ respectively. SS produced from Korea and WP from Canada were examined. The various mixing ratios of WP were 20, 50, and 80% based on HHV. The equivalence ratio of 1.65, reactor temperature of $800^{\circ}C$, air flow rate of $100Lmin^{-1}$, and fluidization number of 4 were fixed in the BFB experiment. In TGA, the range of combustion temperature of SS was wider than that of WP. It represents that the combustibility of WP is higher than that of SS. The BFB reactor temperature was maintained between 800 and $900^{\circ}C$. CO emission of SS was high because of lower combustibility. $NO_X$ and $SO_X$ formation of SS were higher than that of WP since high nitrogen and sulfur contents of SS. CO, $NO_X$, and $SO_X$ formation were suppressed as the mixing ratio of WP was increased. The slagging and fouling tendencies show high in all test conditions.

Selection of the Best Oxygen Carrier for Chemical Looping Combustion in a Bubbling Fluidized Bed Reactor (기포유동층에서 케미컬루핑 연소시스템을 위한 최적 산소전달입자 선정)

  • Kim, Hana;Kim, Jung-Hwan;Yoon, Joo-Young;Lee, Doyeon;Baek, Jeom-In;Ryu, Ho-Jung
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • The reduction reaction characteristics and physicochemical properties were studied for the selection of oxygen carrier, which is the core of the chemical looping combustion (CLC) technology. Fuel conversion and $CO_2$ selectivity of oxygen carrier according to the concentration of reducing gas and the reduction temperature using three kinds of oxygen carrier (SDN70, N018-R2, N016-R4) were measured and compared. In addition, Attrition Index (AI) and BET surface area were measured to analyze the attrition resistance and the surface characteristics of the oxygen carrier. As a result, it was confirmed that all three kinds of oxygen carrier were suitable for use in chemical roofing combustion system, and the best particle was determined to be N016-R4.