• Title/Summary/Keyword: 기포 상승 속도

Search Result 43, Processing Time 0.024 seconds

Bubble Properties in Bubble Columns with Electrolyte Solutions (전해질용액 기포탑에서 기포특성)

  • Yoo, D.J.;Lim, D.H.;Jeon, J.S.;Yang, S.W.;Kang, Y.
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Bubble properties such as size (chord length) and rising velocity were investigated in a bubble column with electrolyte solutions, of which diameter was 0.152m and 2.5m in height, respectively. The size and rising velocity of bubbles were measured by using the dual electrical resistivity probe method. Effects of gas and liquid velocities and ionic strength of liquid phase on the size and rising velocity of bubbles were determined. The bubble size increased with increasing gas velocity but decreased with increasing liquid velocity or ionic strength of liquid phase. The rising velocity of bubbles increased with increasing gas velocity and decreased with increasing ionic strength of liquid phase, however, it showed a slight maximum value with varying liquid velocity. The size and rising velocity of bubbles were well correlated with operating variables.

A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water (수중 고온 단일 기포의 열전달 해석 연구)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2024
  • Bubbles generated in water receive an upward buoyant force due to the density and pressure difference of the surrounding fluid. Additionally, the behavior, shape, and heat exchange process of bubbles vary depending on the viscosity, surface tension, rising speed, and size difference with the surrounding fluid. In this study, we modeled speed, and heat transfer of a high-temperature single bubble rising in a cylindrical water tank. For this purpose, velocity, and temperature of the bubbles were calculated using theoretical equations, to be compared with numerical simulation results. The numerical analysis was performed using a commercial software, and the stability of the numerical analysis with mesh size was confirmed through calculation of the grid convergence index. The numerical analysis of the rising speed and temperature of a single bubble showed the values to converge when the minimum cell size was 1/160 of the bubble diameter, and the temperature decrease was confirmed to be the same as that of the surrounding fluid within 0.05 seconds.

A Review on Size, Shape and Velocity of a Bubble Rising in Liquid (총설: 액체 중에서 상승하는 기포의 크기, 형상 및 속도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Accurate prediction of size, shape and velocity of a bubble rising through a liquid pool is very important for predicting the particulate removal efficiency in pool scrubbing, for designing engineering safety features to prepare for severe accidents in nuclear power plants, and for predicting the emission of fission products from MCCI (molten core-concrete interaction) process during severe accidents. In this review article, previous studies on the determination of the size, shape and rising velocity of a bubble in liquid are reviewed. Various theoretical and parameterization formulas calculating the bubble size, shape and velocity from physical properties of liquid and gas flowrate are compared. Recent studies tend to suggest simple parameterizations that can easily determine the bubble shape and rising velocity without iteration, whereas iteration has to be performed to determine the bubble shape and velocity in old theories. The recent parameterizations show good agreement with measured data obtained from experiments conducted using different liquid materials with very diverse physical properties, proving themselves to be very useful tools for researchers in related fields.

A Study on the Shape and Movement in Dissolved Air Flotation for the Algae Removal (수중조류제거(水中藻類除去)를 위한 가압부상(加壓浮上)에 있어서 기포(氣泡)의 양태(模態)에 관한 연구(研究))

  • Kim, Hwan Gi;Jeong, Tae Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.79-93
    • /
    • 1984
  • The dissolved air flotation(DAF) has been shown to be efficient process for the removal of algae ftom water. The efficiency of DAF can be affected by the volume ratio of pressurized liquid to sample, the pressure pressurized liquid, the contact time, the appropriate coagulant and its amount, the water temperature, the turbulence of reactor, the bubble size and rising velocity etc. The purpose of this paper is to compare the practical bubble rising velocity with the theoretical one, to investigate the adhesion phenomenon of bubbles and floc, and the influence of bubble size and velocity upon the process. The results through theoretical review and experimental investigation are as follows: Ives' equation is more suitable than Stokes' equation in computation of the bubble rising velocity. The collection of bubble and algae floc is convective collection type and resulted from absorption than adhesion or collision. The treatment efficiency is excellent when the bubble sizes are smaller than $l00{\mu}m$, and the turbulence of reactor is small. In the optimum condition of continuous type DAF the volume ratio of pressurized liquid to sample is 15%, the contact time in reactor is 15 minutes, the pressure of pressurized liquid is $4kg/cm^2$ and the distance from jet needle to inlet is 30cm.

  • PDF

A Study on the Behavior of Bubbles in Fluidized Bed (유동층내의 기포거동에 대한 연구)

  • 김용섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.24-28
    • /
    • 1994
  • In the present paper, the behavior of bubbles in a fluidized bed has been investigated experimentally. The bubble size, distribution of bubble, bubble rising velocity and pressure fluctuation in the fluidized bed are obtained at different air velocity. The results are discussed and compared study the effect of air velocity on the behavior of a bubbles in fluidized bed.

  • PDF

Numerical Study on the Flow Characteristics of Bubble Particles in Bubble Reduction Device (기포 저감 장치의 기포입자 유동특성에 따른 수치해석에 관한 연구)

  • Mun, Hyun-Sik;Yoo, Young-Cheol;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.144-149
    • /
    • 2020
  • Bubble reduction devices are intended to solve problems related to the quantitative supply of oil. Therefore, in this study, numerical analysis was conducted to verify the flow characteristics of bubble particles during the operation of a bubble reduction device. As a result of the basic analysis, the area where the rise and fall of bubbles were most active was found, and numerical calculations were performed focusing on the points. Before the numerical calculations, a non-dimensional derivation was performed to secure homogeneity among the variables. Based on the data obtained from non-dimension derivation, 25 variable conditions for each particle size and fluid velocity were set. Through separate calculations, the equation for bubble rise and fall was derived. By calculating the ratio of drag and buoyancy for each variable, if the drag force acting on the bubble was greater than buoyancy, the bubble falls, and bubbles are not reduced. If the buoyancy is larger than drag, the bubble rises, and the bubble is reduced. Through the analysis, the rise and fall of the bubble were confirmed, and the results were consistent with the separate numerical calculations.

Gas and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle -Effects of Flow Zone Sizes- (단일노즐을 사용한 내부순환 공기리프트 반응기에서 기체 및 액체의 유동특성 - 유동지역의 크기영향 -)

  • Jang, Sea-Il;Kim, Jong-Chul;Jang, Young-Joon;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.901-906
    • /
    • 1998
  • Gas and liquid flow characteristics were investigated in an internal circulation airlift reactor using a single nozzle for a gas distributor. In three reactors with different diameters of the downcomer and heights of the riser, the gas holdup in the individual flow zone and the impulseresponse curve of tracer for an air-water system were measured for various gas velocities and reactor heights. Experimental results showed that the flow behavior of bubbles in the riser was the slug flow due to strong coalescences of bubbles and that the bubble flow pattern in the downcomer was the transition bubble flow for the smaller diameter of the downcomer, however, it was the homogeneous bubble flow for the larger one. And mean gas holdups in the individual flow zone and the reactor were greatly increased with decreasing the diameter of the downcomer for the equal ratio of height of the top section to that of the riser. Also, the mixing time was much effected by the height of the top section of reactor and for the equal ratio of height of top section to that of the riser, it was increased with increasing the diameter of the downcomer and the height of the riser. Flow characteristics of liquid were mainly varied with the bubble flow pattern in the downcomer and the size of the top section of reactor. And circulation velocities of liquid in the riser were increased with increasing gas velocities and the size of the top section of reactor, and for the equal ratio of height of top section to that of the riser, they were increased with increasing the diameter of the downcomer and the height of the riser.

  • PDF

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.

Effect of Wall Proximity on Air Bubbles Rising in Liquid (액체중을 상승하는 공기포의 괸벽영향)

  • Kang, Joon Mo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 1977
  • The purpose of this paper is to clarify the effect of wall proximity on the terminal velocity of single air bubbles in vertical tubes. As an initial step, experiments were conducted to determine the terminal velocity, shape, and path of single air bubbles rising freely in water. The terminal velocity of air bubbles rising through water was measured in cylindrical tubes, rectangular tubes, and parallel plates respectively. The results of effect wall of cylindrical tubes were shown as a dimensionless plot, and may also be used to arrive at a decision regarding the minimum size of tube.

Characteristics of Bubble Flow Behavior in a Gas-liquid Countercurrent Bubble Column Bioreactor (기-액 향류 흐름 기포탑 생물 반응기에서 기포 흐름 거동 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Lee, Chan-Gi;Jung, Sung-Hyun;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.272-277
    • /
    • 2005
  • Characteristics of bubbling behavior and bubble properties were investigated in a gas-liquid countercurrent bubble column of in diameter 0.152 m and 3.5 m in height, respectively. Effects of gas and liquid velocities and bubble distribution mode(even, wall-side, central or asymmetric distribution) on the bubble properties such as chord length, frequency, rising velocity and holdup in the reactor were measured and examined by means of dual resistivity probe method. The bubble size, frequency and holdup increased with increasing gas($U_G$) or liquid velocity($U_L$). The rising velocity of bubbles increased with increasing $U_G$, whereas decreased with increasing $U_L$. The uniformity of bubble size distribution and bubble holdup decreased when the distribution mode of bubbles at the gas distributor was changed from even to wall-side, central or asymmetric. The central distribution of bubbles was better than asymmetric mode but worse than wall-side distribution, in considering the bubble holdup and uniformity of distribution.